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SUMMARY

Balanced chromosomal abnormalities (BCAs) rep-
resent a relatively untapped reservoir of single-
gene disruptions in neurodevelopmental disorders
(NDDs). We sequenced BCAs in patients with
autism or related NDDs, revealing disruption of 33
loci in four general categories: (1) genes previously
associated with abnormal neurodevelopment (e.g.,
AUTS2, FOXP1, and CDKL5), (2) single-gene con-
tributors to microdeletion syndromes (MBD5,
SATB2, EHMT1, and SNURF-SNRPN), (3) novel
risk loci (e.g., CHD8, KIRREL3, and ZNF507), and

(4) genes associated with later-onset psychiatric
disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B,
and ANK3). We also discovered among neurodeve-
lopmental cases a profoundly increased burden of
copy-number variants from these 33 loci and a
significant enrichment of polygenic risk alleles
from genome-wide association studies of autism
and schizophrenia. Our findings suggest a polygenic
risk model of autism and reveal that some neurode-
velopmental genes are sensitive to perturbation by
multiple mutational mechanisms, leading to variable
phenotypic outcomes that manifest at different life
stages.
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INTRODUCTION

Mounting evidence indicates that genomic structural variants

(SVs) collectively play a substantial role in susceptibility to autism

spectrum disorders (ASDs) and other neurodevelopmental

disorders (NDDs). However, the near ubiquitous use of chromo-

somal microarrays in research and clinical diagnostics has

limited the assessment of those classes of SV that do not involve

large gains and losses of genetic material, such as inversions,

excision/insertions, and translocations, which together consti-

tute balanced chromosomal abnormalities (BCAs). These events

are typically defined clinically at karyotypic resolution and impli-

cate only broad chromosomal regions, without the gene-level

sequence specificity that would permit informative interpreta-

tion. Even in the research setting, there is often a failure to

consider or assess BCAs, consequently bypassing a meaningful

proportion of subjects with genetic events that maymark a single

locus of potentially large effect. These balanced events offer a

unique route, complementary to conventional approaches, for

identifying individual genes or functional sequences that con-

tribute to otherwise genetically complex human disorders. At

cytogenetic resolution, the estimated frequency of BCAs in

ASD is 1.3% (Marshall et al., 2008), an approximately 6-fold

increase over that observed in more than 10,000 reproductively

normal controls (Ravel et al., 2006). This ratio is almost certainly

a lower bound for relative risk, given the resolution of available

techniques and the inability to survey submicroscopic balanced

alterations. Thus, BCAs have a meaningful impact in ASD and

represent a fertile area for high-resolution study to identify func-

tional sequences that contribute to human neurodevelopment.

We previously described innovations in the molecular

approach to massively parallel sequencing and tailored bioinfor-

matics applicable to the rapid, high-resolution discovery of

chromosomal rearrangement breakpoints (Talkowski et al.,

2011a). These and conceptually similar methods were recently

used to derive potential mechanisms of chromosomal rear-

rangements in B-lymphocytes (Chiarle et al., 2011; Klein et al.,

2011), to delineate complex chromosomal rearrangements and

chromothripsis in cancer cells (Stephens et al., 2011), and to

document balanced chromothripsis and predominant nonho-

mologous repair in the human germline and transgenic animals

(Chiang et al., 2012). Here, with nucleotide resolution, we pre-

cisely characterize karyotypically defined human constitutional

chromosomal rearrangements: 36 de novo BCAs and two in-

herited rearrangements that were transmitted from an affected

parent. The results of our sequencing analyses, coupled with

extensive secondary genomics support, indicate that disruption

of genes from awide range of biological pathways can contribute

to ASD. In many instances, the same genes also confer risk,

sometimes via different mutational mechanisms, to a range of

NDDs and psychiatric disorders in both children and adults.

RESULTS

Identification of Genes Contributing
to Neurodevelopmental Abnormalities
Using a series of previously developed next-generation

sequencing techniques ranging from high-depth whole-genome

sequencing to a targeted capture of breakpoints approach (Talk-

owski et al., 2011a), we delineated BCAs in 38 subjects with

neurodevelopmental abnormalities; these subjects include two

monozygotic twin pairs (36 independent probands). All harbored

a BCA that appeared balanced at karyotypic resolution and was

interpreted as pathogenic by the clinical geneticist; 36 aberra-

tions arose de novo, whereas two alterations were transmitted

from an affected parent and thus segregated with the pheno-

type. Extensive clinical data were collected for all subjects and

affected parents, as described in the Supplemental Information

(available online). If a structured diagnostic interview was per-

formed, or a patient was formally diagnosed with autism or an

ASD by the referring clinician according to DSM-IV criteria,

they are referred to herein as ASD (50% of subjects); otherwise

the disorder was classified as NDD, although many such

subjects also displayed clinical features consistent with ASD.

For complete clinical information for each subject and each

BCA breakpoint, confirmed by PCR and capillary sequencing,

see Data S1: Phenotypic and Sequencing Information on Indi-

vidual Patients. Previously performed genetic testing was also

obtained, and all results were unremarkable with 244,000 or 1

million feature array comparative genomic hybridization

(aCGH) unless otherwise described in the Supplemental

Information.

This BCA sequencing approach uncovered genes that con-

formed to four general classifications, and there was meaningful

overlap between categories: (1) genes previously implicated in

ASD or NDD and confirmed here by their heterozygous inactiva-

tion, (2) genes discovered to be single-locus contributors to

microdeletion syndromes, (3) genes not previously implicated

individually in ASD or NDD, and (4) genes previously associated

with adolescent- and adult-onset psychiatric disorders by

common variant genome-wide association studies (GWASs) or

other approaches; all but three of these represent novel ASD

or NDD loci. Alterations in gene expression were also assessed

for all subjects where a lymphoblastoid cell line could be

obtained (33 of 38 subjects; Figure S1). If a gene was not directly

disrupted, positional effects on expression were evaluated for

genes in proximity to the breakpoint. All genes and sequences

disrupted by BCAs are presented in Table S1 along with results

of mRNA expression studies, whereas the subset of genes,

supported by secondary analyses, is presented below and in

Table 1.

Convergent Data from Molecular Diagnostics
Although the presence of a BCA is conservatively associated

with an �6-fold increased risk of ASD, any individual BCA is

rare and generally nonrecurrent, precluding assessment of false

discovery by replication; consequently, we analyzed copy-

number variants (CNVs) to test whether specific locus hemi-

zygosity contributes to genetic risk of neurodevelopmental

abnormalities. We curated and analyzed a large collection of

33,573 cases from molecular diagnostic facilities and identified

that subset of cases referred for a variety of neurodevelopmental

abnormalities (n = 19,556), as well as that comprising cases

without a referral indication of NDD (n = 14,017). We also

surveyed CNV data from 13,991 controls screened for absence

of a reported developmental or psychiatric phenotype. Although
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almost 25% of the 19,556 cases with neurodevelopmental

abnormalities were referred for testing with an indication of

autism or ASD, we did not have direct access to clinical records

to confirm this diagnosis so we conservatively describe these

cases by using the broader term NDD. Our findings indicate

that genes disrupted by BCAs in ASD individuals frequently

show increased CNV burden across the diagnostic cases

referred for ASD as well as those referred for other neurodeve-

lopmental abnormalities, suggesting that the genes discovered

can contribute to phenotypic outcomes that are not constrained

by ASD diagnostic criteria.

An example of the convergent genomic information collected

in this study is depicted in Figure 1; sequencing of monozygotic

twins with extensive clinical information revealed a translocation

disrupting TCF4, a gene previously implicated in both Pitt-

Hopkins syndrome and schizophrenia, with concomitantly

decreased mRNA expression in both subjects and a significant

impact of CNV burden across the clinical diagnostic samples

(14 case CNVs, 0 control CNVs; p = 0.0006). Additional follow-

up analyses revealed a significant GWAS signal from common

SNPs at TCF4 in both autism and schizophrenia (see analyses

of polygenic risk from GWAS studies below and in Table S2).

Across all loci disrupted by BCAs, a dramatic increase in over-

all CNV burden was observed in cases compared to controls

(CNV burden across 33 loci: p = 2.07 3 10�47, odds ratio

[OR] = 5.12, 95%CI = 3.92–6.79), and this result remained robust

to subset analyses and 1 million random simulations to assess

empirical significance (see Table S2 for CNV results and

Extended Experimental Procedures for analysis details).

Comparison of the NDD cases to the 14,017 diagnostic cases

referred for a primary indication other than NDD and analyzed

on identical platforms also showed an increased CNV burden

across these genes (p = 1.83 10�5), a result that again exceeded

the significance of 1 million random simulations despite the

previously established enrichment of large CNVs in the latter

cases, which we replicate here. Notably, restricting CNV anal-

yses to only those genes disrupted by a BCA in an individual

with a confirmed diagnosis of ASD was also highly significant

(p = 2.76 3 10�28; Table 1). Individually, increased CNV burden

was nominally significant for 14 of the genes in this study, with

three nonsignificant trends (p < 0.10), whereas five additional

genes were disrupted by CNVs in three or more independent

cases but never altered in controls. For the latter, the rarity of

dosage alteration in cases and absence of alterations in controls

limit statistical power but are consistent with a strong deleterious

effect. In each category discussed further below, the genes sup-

ported by secondary CNVs are briefly mentioned and presented

in Table 1, whereas the full list of genes disrupted by BCAs is

Table 1. Genes Disrupted by Chromosomal Rearrangementsa

Cat ID Dx ChrA ChrB Disrupted Fisher’s Exact pb Function

1 DGAP201 ASD 7q11.22 7q36.3 AUTS2 5.6 3 10�4 unknown

1 and 4 NDR27031 NDD 3q13.32 18q21.2 TCF4 6.2 3 10�4 transcription factor

1 DGAP093 NDD Xp22.13 19p13.3 CDKL5 7.2 3 10�2 protein kinase

1 DGAP157 NDD 3p13 10q21.2 FOXP1 4.5 3 10�2 transcription factor

1 and 4 NDR25941 ASD 12p13.1 12q21.31 GRIN2B 7.9 3 10�2 glutamate receptor

1 DGAP189 NDD 11p13 12p12.1 SOX5 8.4 3 10�2 transcription factor in embryonic development

2 DGAP232 ASD 9p11.2 15q11.2 SNURF-SNRPN 1.1 3 10�13 genomic imprinting in angelman – pws region

2 and 4 DGAP155 ASD 9q34.3 11p11.2 EHMT1 3.3 3 10�7 histone methyltransferase

2 DGAP142 ASD 2q23.1 22q13 MBD5 3.1 3 10�5 methylation binding

2 DGAP211 ASD 2q33.1 6q16.3 SATB2 1.1 3 10�3 transcriptional regulation and chromatin remodeling

3 DGAP148 NDD Xp11.4 11q24.2 KIRREL3 1.6 3 10�4 cell adhesion

3 DGAP154 NDD Xq22 17p13.3 SMG6 5.9 3 10�4 nonsense-mediated decay

3 NDR26867 ASD 3q25.31 14q11.2 CHD8 2.4 3 10�2 chromatin remodeling

3 DGAP125 NDD 7q32.1 19q13.11 ZNF507 8.0 3 10�2 zinc finger

3 DGAP132c NDD 5q12.2 7q21.3 PON3 1.5 3 10�1 lactonase

3 AC02-0053 ASD 6q16.1 9q21.13 GNA14 2.7 3 10�1 g-protein signaling

3 DGAP131 NDD 1p22.3 5q33 ZNHIT6 2.7 3 10�1 zinc finger protein

3 DGAP193 ASD 2p22.3 2q31.3 SPAST 2.7 3 10�1 membrane trafficking

3 and 4 DGAP143 NDD 6q22.1 6q27 PDE10A 5.2 3 10�3 phosphodiesterase

3 and 4 DGAP171 NDD 17p13.2 18p11.21 C18orf1 3.2 3 10�2 unknown

3 and 4 DGAP180c NDD 2q32 11q14 ZNF804A 4.7 3 10�2 zinc finger protein

The following abbreviations are used: Cat, disruption category; Dx, diagnosis; ASD, autism spectrum disorder; NDD, other neurodevelopmental

disorders; ChrA and ChrB = sequenced chromosomal sub-band containing the BCA. For the entire data set used to generate this table, see also

Tables S1, S2, and S3.
aBCA-disrupted genes individually implicated by case-control CNV burden at uncorrected p < 0.10 or by a minimum of 3 CNVs in cases with none in

controls are provided. See Table S1 and Supplemental Information for all subjects and phenotypes and Table S2 for CNV counts on all subjects.
bFisher’s exact test p value from comparison of CNV burden between NDD cases and controls.
cBCA inherited from similarly affected parent.
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delineated in Table S1 and discussed in the Supplemental

Information.

Category 1: Balanced Alterations Confirming Loci
Previously Implicated in Neurodevelopment
The power of sequencing BCAs as a discovery tool for loci

contributing to disease etiology is illustrated in our independent

identification of several genes previously suggested as candi-

dates in ASD or NDD. We found direct disruption of AUTS2

and CDKL5, two established neurodevelopmental loci (Bakkalo-

glu et al., 2008; Sultana et al., 2002). We also found disruption of

the fork-head transcription factor FOXP1 and the glutamate

receptor GRIN2B, genes identified from de novo mutations in

ASD by an exome-sequencing study (O’Roak et al., 2011). We

also uncovered disruptions in TCF4, a gene mutated in Pitt-Hop-

kins syndrome as well as other genes implicated by CNV anal-

ysis of an autism cohort (the transcription factor SOX5 and the

dystrophin regulator SNTG2) (Rosenfeld et al., 2010). Consistent

with their status as previously recognized contributors to neuro-

development, the collective CNV burden of these genes is sig-

nificant (p = 7.74 3 10�20; OR = 3.6) (Table 2).

Category 2: Individual Genes Contributing to
Microdeletion Syndromes
Microdeletion syndromes, which contribute to neurodevelop-

mental and psychiatric disorders, typically involve hemizygosity

of large genomic regions where the difficulty of defining specific

genes responsible for core phenotypes has been an obstacle for

clinical genetics, predictive diagnostics, and the study of disease

pathogenesis. BCA sequencing in three ASD subjects pin-

pointed three individual gene contributors to microdeletion

syndromes, each of which is involved in transcriptional and/or

epigenetic regulation, in the 2q23.1, 2q33.1, and 9q34.3 micro-

deletion syndrome regions, respectively. In 2q23.1, a transloca-

tion disrupted MBD5, a member of the methyl-CpG binding

domain protein family defined by a highly conserved methyl

binding domain and including MeCP2, a causal locus in Rett

syndrome. An international consortium follow-up study recently

found 65 structural variations spanning the 2q23.1 microdeletion

region in cases with syndromic features, including ASD,

seizures, and intellectual disability, establishing MBD5 as a

necessary, sufficient, and predictive locus for a majority of the

phenotypic features of the 2q23.1microdeletion syndrome (Talk-

owski et al., 2011b). In the 2q33.1 and 9q34.3 regions, we

respectively identified disruption of SATB2, a gene involved in

transcriptional regulation and chromatin remodeling (Rosenfeld

et al., 2009a), and of EHMT1, encoding a histone methyltransfer-

ase (Kleefstra et al., 2006). In a fourth region (15q11-13), the

nested genes SNURF-SNRPN were disrupted at 15q11.2 in

a subject with ASD and multiple developmental abnormalities,

including sensory integration disorder, but without Angelman

or Prader-Willi syndromes, both of which result from imprinting

Figure 1. Convergent Genomic Evidence Implicates TCF4 in Neurodevelopment

(A) A t(3;18)(q13.32;q21.2) translocation was sequenced with our custom jumping library protocol in monozygotic twin boys with multiple developmental

abnormalities, directly disrupting TCF4 in intron 8, a gene previously associated with Pitt-Hopkins syndrome (PHS) by mutation analysis and with schizophrenia

by GWAS.

(B) Analysis of CNVs revealed disruption of coding and noncoding exons in 14 independent CNVs among 19,556 NDD cases compared to no CNVs observed in

13,991 controls (p = 0.0006), implicating hemizygosity of TCF4 as a highly penetrant locus in NDD, PHS, and ASD (see also Table S2 and Rosenfeld et al., 2009b).

(C) Reduced mRNA expression of TCF4was detected in both cases from EBV-transformed lymphoblastoid cell lines compared to two gender-matched controls

with two independent primers spanning exons 16-17 and exons 18-19. For related supplemental data, see also Figures S1 and S2, Tables S1 and S2, and Data

S1: Phenotypic and Sequencing Information on Individual Patients.
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within the region. Our data argue for increased resolution and

interpretation from molecular diagnostic testing of regional

disorders, particularly for loci in which individual gene disrup-

tions can yield phenotypes that are similar to or indistinguishable

from that defining the syndrome. Given their localization to syn-

dromic regions, it is not surprising that CNV analysis of genes

in this category reflected a strong impact in neurodevelopment

(p = 1.64 3 10�26; OR = 10.2) (Table 2 and Figure 3).

Category 3: Novel Genes Conferring Risk to Autism
and Neurodevelopment
BCA sequencing yielded 22 novel ASD/NDD candidate genes

that, like the genes in categories 1 and 2, are also likely to

contribute to the neurodevelopmental phenotype in the corre-

sponding subjects. The collective increase in CNV burden for

these candidates was highly significant (p = 2.21 3 10�15,

OR = 4.1) (Table 2).

The most significant individual genes are two loci localized to

previously identified genomic disorder regions (KIRREL3 and

SMG6) and one encoding a DNA helicase (CHD8). Similar to

the category 2 genes, we observed dysregulation by BCA and

secondary CNV support for novel genes in regions associated

with classic terminal deletion disorders: KIRREL3 in 11q24.1

(Jacobsen syndrome) and SMG6 in 17p13.3 (Miller-Dieker

syndrome). KIRREL3 encodes a cell adhesion molecule of the

immunoglobulin family expressed in developing and adult brain

of mouse and developing sensory pathways (Morikawa et al.,

2007; Serizawa et al., 2006; Tamura et al., 2005). The locus

was disrupted by a BCA 39.6 kb upstream of the mRNA coding

region that altered both mRNA and protein levels (Table 1 and

Figure S2). Disruption of SMG6 nominates nonsense-mediated

decay as another pathway in ASD and NDD, but not necessarily

in the lissencephaly phenotype commonly seen in Miller-Dieker

syndrome (see Supplemental Information and Figure S3).

CHD8 encodes a DNA helicase that remodels chromatin struc-

ture (Thompson et al., 2008). Although it has never been individ-

ually linked to a human disorder, it represents a strong autism

and NDD candidate locus. It was disrupted by a BCA in a subject

diagnosed with ASD (Table 1 and Data S1: Phenotypic and

Sequencing Information on Individual Patients), was supported

by our CNV analyses (Table S2, see also genes sensitive to

dosage dysregulation section below), and was among the loci

within the minimal region of overlap from previous analyses of

de novo microdeletions (Zahir et al., 2007). CHD8 is a transcrip-

tional repressor that also interacts with genes implicated in NDD

such as CHD7, a causal locus in CHARGE syndrome. (Batsukh

et al., 2010; Nishiyama et al., 2009; Rodrı́guez-Paredes et al.,

2009).

Additionally, in seven subjects no annotated gene was disrup-

ted but several expressed sequence tags (ESTs), conserved

sequences, and regions with predicted regulatory effects were

impacted by breakpoints (Table S1), suggesting that BCAs

may also provide a novel entrée into such regions. In these

subjects, we considered both loci in proximity to the breakpoint

for positional effects (e.g., KIRREL3), as well as disrupted but

functionally unannotated sequences themselves, such as the

highly conserved 6q16.3 sequence of unknown function disrup-

ted by a BCA in an ASD subject (denoted as ‘‘High Cons’’ in

Table S1) and the noncoding RNA LOC401324.

Category 4: Neurodevelopmental Loci Associated with
Risk that Crosses Traditional Diagnostic Boundaries
A remarkable number of genes implicated in ASD or NDD by

single-gene disruption from BCAs in our study have also been

recently associated with a spectrum of developmental, psychi-

atric, and behavioral phenotypes by other strategies, such as

GWAS and mutation screening, including TCF4 (Pitt-Hopkins

syndrome, intellectual disability, schizophrenia) (Amiel et al.,

2007; Blake et al., 2010; Rosenfeld et al., 2009b), GRIN2B

(schizophrenia, bipolar disorder, and neurodevelopment) (En-

dele et al., 2010), EHMT1 (schizophrenia) (Kirov et al., 2012),

and four novel neurodevelopmental genes that overlap with

category 3: ZNF804A (schizophrenia, psychosis, and cognitive

function) (O’Donovan et al., 2008; Walters et al., 2010), ANK3

(bipolar disorder and schizophrenia) (Ferreira et al., 2008; Wil-

liams et al., 2011), C18orf1 (schizophrenia) (Meerabux et al.,

2009), and PDE10A (schizophrenia) (Kehler and Nielsen, 2011).

All loci with the exception of ANK3 are supported by secondary

CNV analyses (Table 1). Of these category 4 candidates not

previously associated with ASD or NDD, only PDE10A has an

established function, encoding a phosphodiesterase suggested

as a biological candidate in schizophrenia due to its high tissue-

specific expression in the caudate nucleus. Specific PDE10A

inhibitors provide a potential therapeutic approach to schizo-

phrenia due to their regulation of cAMP and cGMP, thereby

altering dopamine D1 and D2 receptor activity (Kehler and Niel-

sen, 2011; Lakics et al., 2010).

Genes in this category appear to contribute to pleiotropic

effects ranging from early-onset autism and intellectual disability

to adult-onset psychosis, often through different mutational

mechanisms. Several were previously associated with psychi-

atric disorders by unbiased GWAS and/or by candidate gene

studies of common variants, which are thought to reflect a

more subtle effect on gene regulation than the outright inactiva-

tion caused by the BCA disruption. One compelling example

of different mutational mechanisms is TCF4, where rare

mutations are recognized as causing NDD, sometimes with

a diagnosis of Pitt-Hopkins syndrome, but common TCF4

Table 2. Analysis of Copy-Number Variants in Independent

Samples

Gene

Categories

NDD

Counta
Control

Counta p Value OR 95% CI

All Genes 443 63 2.1 3 10�47 5.1 3.9–6.8

Category 1 114 23 7.7 3 10�20 3.6 2.3–5.9

Category 2 169 12 1.6 3 10�26 10.2 5.7–20.1

Category 3 160 28 2.2 3 10�15 4.1 2.7–6.4

Category 4 111 12 5.1 3 10�15 6.7 3.7–13.3

Categories

1, 3, and 4

274 51 5.2 3 10�24 3.9 2.9–5.3

All Genes = all 33 loci disrupted by BCAs and included in the CNV

analyses. Categories 1, 3, and 4 = analyses of all genes not localized to

microdeletion syndromes known to be associated with increased CNV

burden. See Table S2 for all genes in each category.
aCounts of CNVs from 19,556 NDD cases and 13,991 controls.
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variation has recently emerged as a significant risk factor for

schizophrenia. Taken together, our findings support the long-

hypothesized notion of a neurodevelopmental component to

adult-onset neuropsychiatric disorders such as schizophrenia

(Murray and Lewis, 1987; Owen et al., 2011; Weinberger,

1986). However, our data extend this hypothesis to suggest

that differing mutational impact on the same sets of genes

constitutes a significant overlap in the genetic etiology of autism,

schizophrenia, psychosis, bipolar disorder, and intellectual

disability, comprising at least a subset of the total genetic vari-

ance for each of these disorders. The collective CNV burden

for these genes decisively supports the fundamental hypothesis

that some psychiatric disease-associated genes are important in

neurodevelopment (p = 5.1 3 10�15; OR = 6.7) (Table 2).

Polygenic Risk from Genome-wide Association Studies
Our identification of genes disrupted by BCA in ASD or NDDwith

an increased CNV burden among diagnostic cases with neuro-

developmental abnormalities suggests that these are relatively

penetrant alterations in human development, consistent with

polygenic risk factors of modest to large effect. However, the

discovery of the genes in category 4 suggests that for some

loci, an accumulation of subtle genetic effects associated with

common polymorphisms could have a pleiotropic impact across

a spectrum of early childhood and adult-onset psychiatric disor-

ders. To test this hypothesis, we performed gene-set enrichment

analyses in data sets from GWASs of autism and schizophrenia

(Ripke et al., 2011; Wang et al., 2009; Weiss et al., 2009) by using

an established method in which each linkage disequilibrium

block across the genome is scored with the maximum Z score

achieved in the block (Rossin et al., 2011). Analysis of an initial

autism study revealed a highly significant enrichment of risk

alleles across the gene set (empirical p = 0.0018), a result that

persisted in the second GWAS of autism (p = 0.068). Moreover,

we discovered a significant enrichment of associated alleles

from the largest GWAS meta-analysis of schizophrenia to date

(empirical p = 0.0009). Struck by these results, we evaluated

the potential for any unforeseen confounding variables by per-

forming identical enrichment analyses in phenotype-permuted

data sets from the meta-analysis of schizophrenia and autism

studies (p = 0.444 and p = 0.518, respectively), in a well-powered

GWAS study of Crohn’s disease (p = 0.819) (Franke et al., 2010),

and from GWAS data for seven other unrelated traits (p values

ranged from p = 0.06 to p = 0.917, fitting nicely to the expected

null distribution). These data indicate an unusually strong

enrichment of subtle effects from common polygenic risk

loci in autism and schizophrenia among the genes identified by

our BCA sequencing and further support the hypothesis that

diverse mutational mechanisms at these loci can confer pleio-

tropic effects across conventional diagnostic classifications

(Figure 2).

Genes Sensitive to Dosage Dysregulation
The finding that some genes associated with ASD or NDD due

to inactivation of one allele may also contribute to abnormal

phenotypes when more subtly disrupted suggests that some

ASD or NDD genes require tight control of their expression for

appropriate neurodevelopmental function. In such circum-

stances, disruption by increased dosage might also produce

anNDD phenotype. This is highlighted inmore detailed examina-

tion of the CNV analyses presented in Figures 1, 3, and 4, which

indicate that for some genes, the CNV data predict that both

deletion and duplication are risk factors for abnormal neurode-

velopment, whereas for other loci the mechanism of disruption

appears to be dosage specific. For example, previously estab-

lished NDD risk loci (TCF4, Figure 1; SATB2 andMBD5, Figure 3)

almost exclusively display deletion among the CNV cases,

clearly supporting a similar mechanism of dysregulation to that

seen for the BCA disruption. This is also true for NDD candidates

such as PDE10A and KIRREL3. However, there are a number

of genes similar to the three instances shown here for which

CNV analysis supported genetic risk from both deletion and

duplication, approaching a near 50:50 balance, including two

well-established loci (AUTS2 and CDKL5) (Figure 4A and Table

S3). Interestingly, CNV analysis also supported genetic risk pre-

dominantly resulting from duplication of a locus (e.g., CHD8,

GRIN2B, and FOXP1, Figure 4B), suggesting similar phenotypic

outcomes from both dosage increase and heterozygous inacti-

vation by BCA disruption, as in this study, or de novo mutations

in a previous study (for GRIN2B and FOXP1) (O’Roak et al.,

2011). These data build upon previous findings in recurrent

rearrangement regions, such as the common recurrent

16p11.2 microdeletion/microduplication (Weiss et al., 2008),

where both deletion and duplication increase risk for autism to

different degrees and have disparate impacts (including recip-

rocal phenotypes) for other disorders and physiological traits.

Figure 2. Genes Disrupted by Chromosomal Abnormalities Confer

Risk across Diagnostic Groups

All genes disrupted by a BCA and analyzed in the CNV analyses are shown.

Although all genes are implicated in ASD or NDD by BCA disruption in this

study, some loci also represented single-gene contributors to previously

recognized genomic disorder (GD) regions (three microdeletion syndromes,

two terminal deletion syndromes, and one duplication syndrome). There were

also genes discovered in ASD or NDD in this study that had been previously

linked to adolescent- or adult-onset neuropsychiatric disorders (NPD) by

common variation association studies. The asterisk (*) denotes a gene not

previously implicated in ASD or NDD (category 3). See also Table 1 and Table

S2 for CNV and GWAS support for each locus.
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The clear distinction between neurodevelopmental loci associ-

ated primarily with deletion or duplication and those displaying

similarly abnormal neurodevelopment from either event empha-

Figure 3. Disruption of Individual Genes in Micro-

deletion Syndromes Regions

(A–C) Gene-specific view of sequenced BCAs and

CNVs implicating individual genes involved in transcrip-

tional or epigenetic regulation and localized to previously

described microdeletion syndromes, each of which

implicates a single gene by the combined BCA and CNV

analyses. Haploinsufficiency of mRNA was confirmed for

each gene (Figure S1). A breakpoint disrupting a two-gene

locus (SNURF and SNRPN) was detected in a fourth

microdeletion syndrome, 15q11-13 (not shown). Red bars

indicate copy loss, blue bars are copy gains, and striped

bars are gene-specific alterations. Green bars represent

‘‘Other’’ alterations (balanced or unbalanced trans-

location, inversion, or complex alteration involving both

deletion and duplication). The bar at the top provides the

count of gains and losses that extend beyond the window

and is color coded to reflect the relative proportion of each

variant type. Confidence intervals provide the distance

to the next probe without a detected dosage imbalance.

A single RefSeq transcript is provided. Breakpoint

sequence from each derivative is provided with text color

coded by originating chromosome or nontemplated in-

serted sequence in gray. A subset of the SATB2 patients

included here were previously reported by Rosenfeld et al.

(2009), and all cases reported here forMBD5, as well as 44

additional structural variants, are reported in a follow-up

consortium study (Talkowski et al., 2011b). See also Table

S3 and Figure S3.

sizes the need for detailed experimental annota-

tion of the genome with respect to dosage-

sensitive loci and phenotypic prediction.

Disrupted Genes Do Not Converge on
a Single Pathway in Neurodevelopment
The genomics approach in this study enabled

direct interpretation of locus specificity for

further downstream analyses. We evaluated

the networks in which these genes may partici-

pate and whether any biological pathways

emerged as significantly enriched for genes

disrupted by these BCAs. A qualitative network

analysis based on interactions from PubMed

abstracts and the use of a natural language

processing algorithm identified a network of

429 interacting genes (Figure 5 and Figure S4).

Fourteen of the original genes, many of which

are involved in transcriptional regulation, were

found to interact indirectly in a large, intercon-

nected network, and TCF4, SNRPN, CHD8,

and GTF2F1 were confirmed as interacting

partners of the RNA Polymerase II complex.

Analysis of gene ontology (GO) terms found

enrichment of transcription factors, phospho-

proteins, and protein heterodimerization activity

(p < 0.005). A quantitative network assessment

did not find statistically significant first- or second-order interac-

tions compared to chance expectations (given the size and

composition of the given networks). The nominally significant
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networks (statistical enrichment of pathways at p < 0.05)

included shared interactions between SNTG2, UTRN, GNA14,

and CDKRAP2 (p = 0.01) as well as KCND2 and GRIN2B (p =

0.03) (Figure S4). The SNURF-SNRPN complex was nominally

significant in both analyses and in an assessment of physical

interactions (Supplemental Information). No results were sig-

nificant after correction for multiple testing. There was also

no convergence on one or a few pathways involved in

Figure 4. Genes Sensitive to Dosage Dysregulation

Provided is an example of genes illustrated by this study that appear to be sensitive to a spectrum of mutational mechanisms reciprocally altering their gene

dosage. In Figures 1 and 2 are examples of genes such as TCF4 and SATB2 that are disrupted exclusively by deletions.

(A) Genes sensitive to dosage dysregulation from which both deletion and duplication appear to confer risk for similar phenotypes (AUTS2, CDKL5, C18orf1).

(B) Three loci, FOXP1,GRIN2B, and CHD8, are recognized for duplication of the locus as the predominant mutational mechanism, yet all three loci are implicated

by heterozygous inactivation from BCA disruption in this study. Two of these genes, FOXP1 andGRIN2B are also supported by de novomutation in ASD families

(O’Roak et al., 2011). CHD8 is a completely novel candidate not previously implicated in ASD or any human abnormality. These data suggest annotation of the

human genome is insufficient to reliably predict the impact of various mutational mechanisms of specific loci involved in neurodevelopment. See also Table S3.
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neurodevelopment, probably a reflection of the modest number

of genes studied and the unknown function of many of the novel

genes. These results could also signify that interaction of a

diverse range of functional networks at many levels is critical

to normal human neurodevelopment and that there is ample

opportunity for genetic lesions to disrupt different functional

pathways while still leading to similar neurodevelopmental

outcomes.

DISCUSSION

Direct sequencing of BCA breakpoints, followed by targeted

assessment ofmolecular diagnosticCNVfindings in independent

subjects, proved to be an efficient strategy for individual gene

discovery in abnormal neurodevelopment. As this approach

begins with sequence resolution of individual BCAs, it is not

subject to notable limitations of other de novo mutation studies

that rely purely on CNVs or on exome sequencing (i.e., primarily

identification of large multigene regions in the former and failure

to assess most noncoding sequence in the latter) and therefore

provides aneffective complement to theseapproaches. The yield

of this study is considerable; 22 novel loci are disrupted by

BCAs and 14 loci are supported from secondary analyses

either by a statistical enrichment of CNV burden or disruption in

multiple cases and absence of dosage alterations in controls,

with several additional genes and sequences whose potential

for contribution merits further examination. These findings not

only extend specific knowledge of neurodevelopmental genes

implicated by microdeletion syndromes, GWA, CNV, and exome

sequencing studies but also reveal entirely unsuspected genes

in ASD and NDD. This work also presents direct evidence for

a complex genetic architecture that connects neurodevelop-

mental and adult-onset psychiatric disorders by implicating

robustly associated schizophrenia loci as contributors to neuro-

developmental abnormalities.

Our analyses were based upon the premise that alone, a de

novo BCA disruption in a single case, CNVs spanning a given

region locus, or the presence of a de novo mutation within the

coding region of an interesting biological candidate does not

by itself represent compelling evidence that a gene contributes

to neurodevelopment. Instead, we sought convergent genomic

evidence combining disruption by a de novo BCA (or in two sub-

jects a BCA that cosegregated with the phenotype) with associ-

ation by CNV or mutation in independent and similarly affected

cases, followed by comparisonwith risk loci fromGWAS studies.

The strength of evidence varied between loci, as shown in Table

1 and Table S2. In some instances, genes were statistically sup-

ported by secondary CNV analyses, in others, the statistical

support was inconclusive, and in several the CNV data do not

nominate the locus as an NDD candidate (e.g., ZBTB20; see

Figure 5. Network Analysis of Genes Implicated in Autism or Neurodevelopment in This Study

A large network of genes disrupted by BCAs in this study are connected by first-, second-, or higher-order interactions. No networks were significantly enriched

for genes disrupted by BCAs after correction for multiple comparisons, though a number of loci have limited functional annotation available or remain of unknown

function. See also Figure S4.
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Table 1, Table S2, and Table S3). Additionally, like any genetic

study, we cannot discount a potential contribution from altered

expression of other genes at a distance from the site of the

disruption. Although such an effect could result from the trans-

position of functional elements, the comprehensive testing of

this possibility is problematic because it could involve dysregu-

lation that is tissue-specific, that occurs due to the potentially

altered nuclear organization of the rearranged chromosomes,

or that is a secondary physiological consequence of the primary

gene disruption. Nonetheless, secondary CNV analyses from

independent NDD cases indicate a profound collective contribu-

tion of the disrupted genes on neurodevelopment. Simulations

and subset analyses to evaluate empirical significance estab-

lished that the increased CNV burden of the loci disrupted by

BCAs was robust; unusually specific to neurodevelopmental

disorders compared to other phenotypic presentations referred

for molecular diagnostic testing; and not driven by any single

gene, individual disruption category, cluster of symptoms, or

discrete diagnostic category. Rather, it was an accumulation of

risk factors from all four categories that collectively contributed

to the significant burden observed (see Supplemental Informa-

tion). For some genes, developmental abnormalities were pre-

dominantly associated with dosage alteration in only one

direction, whereas for others the increased CNV burden involved

both deletions and duplications. These data illustrate the imma-

ture state of annotation of the human genome with respect to

dosage sensitivity and to prediction of phenotypic outcomes

from genetic lesions, a limitation that may be alleviated at least

in part by the growing capacity to sequence BCAs in a relatively

high-throughput manner.

A surprising number of genes previously associated with

adolescent- or adult-onset psychiatric disorders were disrupted

in children with autism and NDD in this study. The concept of

schizophrenia as a neurodevelopmental disorder has long

been proposed (Murray and Lewis, 1987; Weinberger, 1986),

and a growing consensus in the recent literature suggests that

there are shared risk factors across what are viewed clinically

as distinct phenotypic classifications, although few of these

have been described at the individual gene level (Owen et al.,

2011). Our study supports a shared genetic etiology for at least

a portion of the phenotypic spectrum of schizophrenia, autism,

and the neurodevelopmental abnormalities studied here. We

find unambiguous gene disruption by BCAs in ASD and NDD

subjects, coupled with an increased CNV burden and a substan-

tial overrepresentation of polygenic risk compared to null

expectations from GWAS of schizophrenia. Individual genes

may thus show a differential risk depending on the nature of

the genetic lesion, with heterozygous inactivation from BCA,

CNV, or deactivating point mutation being a relatively penetrant

contributor to ASD or NDD, whereas subtle effects from

common variants contribute to later-onset disorders. However,

contrary to this simple hypothesis, we were surprised to find

persistent enrichment of these genes also among common

variant associations from autism GWAS studies, suggesting

that even subtle perturbation of genes important in normal

human development can contribute to abnormal outcomes

across the lifespan, presumably in interaction with other genetic

and environmental influences.

This initial sequence-based delineation of a large collection of

subjects harboring chromosomal aberrations in autism and

related neurodevelopmental disorders establishes an approach

that can be exploited for efficient discovery of individual genetic

factors contributing to otherwise complex disorders. Each

individual gene identified provides a new, specific hypothesis

concerning the disease to be tested with further genetic and

biological study. If supported, each then represents a foundation

for investigations into the role that the biochemical activity and

regulation of its product play in pathogenesis and into the poten-

tial for treatment through their manipulation. Ultimately, such

data will also provide invaluable annotation of the human

genome and profoundly impact the clinical interpretation of

genomic events in subjects referred to diagnostic laboratories

for autism and other developmental abnormalities.

EXPERIMENTAL PROCEDURES

Patients

Subjects were obtained from the Developmental Genome Anatomy Project

(DGAP) (Higgins et al., 2008), the Autism Consortium of Boston, the Center

for Human Genetic Research (CHGR) Neurodevelopmental Repository, and

the Autism Genome Resource Exchange (AGRE). These studies were

approved by the institutional review board of Partners HealthCare System.

Clinical information was obtained by direct questionnaires, medical records,

or structured clinical interviews (see Data S1: Phenotypic and Sequencing

Information on Individual Patients).

Sequencing

Sequencing was performed on the Illumina platform (Illumina). Libraries were

created by four different methods optimized for delineating BCAs, including

(1) Illumina standard insert paired-end sequencing, (2) Illumina mate-pair

sequencing (long 2,000–4,000 bp inserts), (3) our customized jumping libraries

(long 3,000–4,500 bp inserts), and (4) our capture of breakpoints method

(CapBP) for rearrangements previously localized (see Supplemental Informa-

tion with complete protocols in Talkowski et al. [2011a]). Interestingly, some

rearrangements proved to be far more complex than suspected by karyotyp-

ing, and in at least two subjects this complexity represented balanced

germline chromothripsis similar to but distinct from previously described

events in cancer cells (DGAP127 and DGAP203; see Table S4 and (Chiang

et al., 2012)). In complex rearrangements where more than two genes were

disrupted by BCA breakpoints, we conservatively excluded these cases

from interpretation in our secondary CNV/GWAS analyses.

Bioinformatics

Sequencing reads were aligned via publicly available alignment programs and

custom scripts, followed by processing of BAM files with a C++ program,

Bamstat, to tabulate mapping statistics and output lists of anomalous

read-pairs (defined as having ends that map to two different chromosomes,

having an abnormal insert size, and/or unexpected strand orientations)

(Talkowski et al., 2011a). Anomalous pairs were clustered by their mapped

mates with a program that performs a single-linkage clustering of paired reads

if corresponding ends map within a specified distance. All junction fragments

predicted from paired-end sequencing were PCR amplified from genomic

DNA, independent of the libraries and sequencing reads, and all breakpoints

presented in this study were confirmed by capillary sequencing (Table S1

and also Table S5).

Evaluation of CNVs in Independent Subjects

Complete details on the CNV data, statistical analyses, and simulations to

determine empirical significance are fully described in Supplemental Informa-

tion. We compiled CNV data from 33,573 cases from molecular diagnostic

laboratories of Signature Genomic Laboratories (SG) and Children’s Hospital

Boston (CHB) analyzed by oligonucleotide aCGH. A subset of the SG data
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was included in a recent CNV study (Cooper et al., 2011). We fully annotated

both data sets and collapsed all subjects with an indication for study (but

without additional clinical information to verify a specific diagnosis) of autism,

ASD, or a related neurodevelopmental abnormality into a combined NDD

cohort (19,556 cases) and those for which the clinical indication did not

indicate an NDD (14,017 cases). Control data were obtained across multiple

published resources as described in the Supplemental Information (n =

13,991 independent controls). Only 6,239 controls were analyzed for CNVs

on the X chromosome, and this reduced comparison group was used for

analyses of CDKL5. The resolution between the clinical aCGH and higher-

resolution control SNP microarrays varied extensively. To overcome this

disparity but retain the native resolution of each individual array platform, we

analyzed all CNVs that disrupted any documented coding or noncoding

exon from all transcripts available from multiple database sources (Table

S1). Notably, post hoc analyses reveal that a size filter of 100 kb, or the reso-

lution of the most sparse control arrays, would have resulted in an almost

identical CNV burden test to our exon disruption model (p = 1.18 3 10�47),

but would have omitted high-confidence CNV calls in controls that could point

toward reduced penetrance or nonsignificant loci in this study such as

ZBTB20. Empirical significance was established by simulations performed in

MATLAB (Mathworks) with custom scripts with all methods and findings

described in the Supplemental Information. In brief, 1 million gene sets of 33

loci were randomly selected from the genome, and case-control CNV burden

tests were performed for each random gene set. These same analyses were

performed for NDD cases compared to all other cases in the molecular diag-

nostic cohort. Neither simulation detected a random gene set exceeding the

significance of the experimental gene set. Another set of experiments per-

formed subset analyses, randomly selecting up to 1,000 gene sets of each

possible number of k genes from the experimental gene set of 33 loci, ranging

from k = 5 to k = 33, finding a minimum of 90.5% of all subsets at a level as low

as k = 5 exceededmultiple testing correction and 100% of the 1,000 gene sets

to be significant at k > 13 (see Supplemental Information).

Genome-wide Association Studies

We performed gene-set enrichment analysis from GWAS data by using pub-

lishedmethods (Rossin et al., 2011) on a recentmeta-analysis of schizophrenia

(Ripke et al., 2011) and two GWASs of autism (Weiss et al., 2009; Wang et al.,

2009). Briefly, linkage disequilibrium blocks across the genome are scored

with the maximum Z score achieved in the block. That score is corrected for

the number of tests across the block via linear regression and the residuals

are then used as the new, corrected score for each block. Genes nominate

scores based upon the unique set of blocks they overlap, and the nominated

scores are compared to background scores from all genes in the genome via

a one-tailed rank-sum test.

Network Analysis

A qualitative assessment of interacting genes and complexes for each of the

genes in which functional information was available (little data existed for

some of the novel genes) was initially performed with Natural Language Pro-

cessing (NLP) from published abstracts (see Supplemental Information).

Secondary analyses of GO and Kyoto Encyclopedia Of Genes And Genomes

(KEGG) enrichments were then performed followed by quantitative network

building of first- and second-order interactions of the set of proteins coded

by the genes disrupted by BCAs. The significance of these networks was

determined by permutation testing (Supplemental Information).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and five tables and can be found with this article online at

doi:10.1016/j.cell.2012.03.028.
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