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Sepsis is a frequently fatal condition characterized by an uncontrolled and harmful
host reaction to microbial infection. Despite the prevalence and severity of sepsis,
we lack a fundamental grasp of its pathophysiology. Here we report that the cytokine
interleukin-3 (IL-3) potentiates inflammation in sepsis. Using a mouse model of
abdominal sepsis, we showed that innate response activator B cells produce IL-3,
which induces myelopoiesis of Ly-6Chigh monocytes and neutrophils and fuels a
cytokine storm. IL-3 deficiency protects mice against sepsis. In humans with sepsis,
high plasma IL-3 levels are associated with high mortality even after adjusting for
prognostic indicators. This study deepens our understanding of immune activation,
identifies IL-3 as an orchestrator of emergency myelopoiesis, and reveals a new
therapeutic target for treating sepsis.

I
nterleukin-3 (IL-3) contributes to leuko-
cyte production, proliferation, and survival
(1–4). Myeloid cells such as monocytes and
neutrophils produce IL-1b, IL-6, and tu-
mor necrosis factor–a (TNF-a), the three

inflammatory hallmark cytokines constituting
the cytokine storm during septic shock (5–7).
Yet despite these links, IL-3’s role in sepsis re-
mains unknown. Il3–/– mice have normal blood
monocyte and neutrophil profiles (fig. S1, A to
G) (8) and thus do not require IL-3 for myelo-
poiesis in the steady state. To test whether IL-3
is important in sepsis, we subjected Il3–/– and
control wild-type (WT) mice to cecal ligation
and puncture (CLP), a model of polymicrobial
sepsis (9). Compared to WT mice, Il3–/– mice
were protected from sepsis, as seen in their lower
mortality rates, even after antibiotic treatment
(Fig. 1A). Il3–/– mice had better clinical scores,
body temperatures (Fig. 1B), and blood pres-
sure (Fig. 1C), and their recovery was associated
with efficient microbial clearance, indicating
that the absence of IL-3 did not compromise
bactericidal activity or recognition (Fig. 1D and
fig. S2).

To characterize the host response more com-
pletely, we performed time-course tissue, cellu-
lar, andmolecular experiments. At 1 day after CLP,
WT mice developed neutrophilia and inflamma-
tory Ly-6Chigh monocytosis (Fig. 1E), whereas in
Il3–/– mice, monocyte and neutrophil numbers
remained relatively unchanged. The increased cell
numbers inWTmice were associated with higher
serum levels of IL-1b, IL-6, and TNF-a (Fig. 1F).
Phagocytic leukocytesweremajor sources of IL-1b,
IL-6, and TN-Fa, because phagocyte depletion
with clodronate liposomes and anti–Ly-6G be-
fore CLP abolished the cytokine storm (fig. S3A).
However, IL-3–mediated cytokine induction was
indirect: Both WT and Il3–/– neutrophils and
monocytes contained similar intracellular res-
ervoirs of the three cytokines (fig. S3B). Analy-
zing other leukocytes showed IL-3–dependent
differences in T and B cell numbers after CLP
(fig. S4A), but no differences in basophils, mast
cells (10–12) (fig. S4, B and C), or histamine (fig.
S4D), which suggests that IL-3 had little to no
effect on basophil and mast cell production
and function during the initial inflammation-
dominant phase. Consequently, WT but not
Il3–/– mice accumulated monocytes and neu-
trophils in the lung (Fig. 1G) and liver (Fig. 1H);
developed lung pathology (fig. S5A) with in-
creased protein in bronchoalveolar lavage (fig.
S5B); and evolved abnormal liver morphology
(fig. S5C) with increased markers of cytolysis in
serum (fig. S5D). These data show that IL-3
contributed to septic shock, themost severe form
of sepsis (13, 14).
IL-3 promotes hematopoiesis by acting on its

receptor, a heterodimer that consists of the IL-

3–specific a chain (CD123) and the common b
chain (CD131) (4). In the steady state, Lin– c-kit+

hematopoietic stem and progenitor cells (HSPCs),
including megakaryocyte and erythrocyte pro-
genitors (MEPs), common myeloid progenitors
(CMPs), granulocyte and macrophage progen-
itors (GMPs), and macrophage and dendritic pro-
genitors (MDPs), expressed CD123 at the same
level in bothWT and Il3–/–mice (Fig. 2A and S6).
One day after CLP, the numbers of medullary
HSPCs, CMPs, MEPs, and GMPs/MDPs increased
over the steady state in WT but not Il3–/– mice
(Fig. 2B). GMPs are committed to differentiate into
monocytes and neutrophils (15). We therefore pur-
sued fate-mapping experiments involving adoptive-
ly transferring green fluorescent protein–positive
(GFP+) GMPs intoWT or Il3–/–mice. In response
to CLP, the bonemarrow ofWTmice contained
a larger population of GFP+ cells than the bone
marrow of Il3–/– mice, indicating IL-3–dependent
progenitor expansion (Fig. 2C). To bolster this ob-
servation, we placed Lin– bonemarrow cells (con-
taining predominantly HSPCs) in vitro in medium
either alone or supplemented with IL-3, lipo-
polysaccharide (LPS), or both.We found that IL-3,
but not LPS, increased cell expansion and gen-
erated myeloid cells well above the numbers ini-
tially placed into culture (Fig. 2D). Although IL-3
alone modestly affected IL-1b, IL-6, and TNF-a
production, combined IL-3 and LPS exacerbated
the response (Fig. 2E). These data suggest that IL-3
is responsible for the cytokine storm, albeit in-
directly, by generating a large pool of cells that,
upon recognizing bacterial components, produce
cytokines in larger quantities.
To determine whether IL-3 can trigger severe

sepsis in vivo, whether it can do so alone or in
combinationwith infection, andwhether it relies
on its specific receptor, we injected (i) recombi-
nant IL-3 (rIL-3) into otherwise healthyWTmice;
(ii) anti-CD123 into WT mice subjected to CLP;
and (iii) rIL-3 into Il3–/– mice subjected to CLP.
rIL-3 augmented GMPs in the bone marrow and
leukocyte numbers in the blood of healthy WT
mice to levels akin to those in WTmice subjected
to CLP (Fig. 2F). Despite this increase, rIL-3 per se
did not induce a cytokine storm in the absence of
infection (Fig. 2G), thus confirming our in vitro
observations. Conversely, anti-CD123 attenuated
cell numbers inWTCLPmice (Fig. 2F) and tended
to decrease serum cytokines (although the dif-
ferences were not statistically significant) (Fig.
2G) without depleting HSPCs (fig. S7). Il3–/–

mice receiving rIL-3 in the context of CLP aug-
mentedmedullary GMP, circulating neutrophil,
and Ly-6Chigh monocyte numbers (Fig. 2F). These
increases corresponded to higher cytokine levels in
serum (Fig. 2G). Ultimately, WT mice treated with
anti-CD123 had amodest but significant improve-
ment in survival (Fig. 2H), whereas Il3–/– mice
receiving rIL-3 succumbed to infection and died as
often asWTmice (Fig. 2I). These data confirm the
effects of IL-3 on cell production and survival and
identify the IL-3–CD123 axis as a potential new
therapeutic target for treating sepsis.
Activated T cells (16) and thymic epithelial cells

(17) produce IL-3 in the steady state, but the
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cytokine’s source in sepsis is unknown. mRNA
profiling identified the spleen, thymus, and lymph
nodes as hubs of basal Il3 expression. After CLP, Il3
mRNA progressively increased in the spleen, fol-
lowed by the thymus and lymph nodes, with no
signal in the bonemarrow, lung, liver, peritoneum,
or duodenum (Fig. 3A). As indicated by flow
cytometry (Fig. 3, B and C) and Western blots

(Fig. 3D), IL-3+ cells were CD19+ B cells. Accord-
ing to enzyme-linked immunosorbent assay, IL-3
levels increased in serum after CLP (Fig. 3E)
but to a lesser extent in splenectomized mice
(Fig. 3E).
Identifying B cells as sources of IL-3 prompted

testing ofwhether IL-3–producingB cells resemble
innate response activator (IRA) B cells (fig. S8A),

whose GM-CSF (granulocyte-macrophage colony-
stimulating factor) product protects against sepsis
and pneumonia via polyreactive immunoglobulin
M (IgM) (18, 19). Phenotypic profiling showed
that splenic IL-3 producers were IgMhigh CD23low

CD19+ CD138high CD43+ VLA4+ (Fig. 3F and fig.
S8B), as well as CD5int LFA1+ CD284+ CD11blow/–

(fig. S8C). This phenotype matches that of IRA
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Fig. 1. IL-3 is detrimental in experimental sepsis. Comparison of Il3–/–

and Balb/c (WT) mice during experimental sepsis using the CLP model. (A)
Kaplan-Meier survival curve in mice not receiving antibiotics (n = 10 mice per
group) and in mice receiving antibiotics (Imipenem) (n = 12 or 13 per group).
d,days. (B) Clinical score andbody temperature (n=6 to 10pergroup). h, hours.
(C) Blood pressure. The blood pressure in WTmice was below the detection
limit (n = 6 to 10 per group). (D) Bacterial titer of peritoneal cavity and blood
(n = 3 to 10 per group). (E) Enumeration of neutrophils and Ly-6Chigh mono-

cytes in 1ml of blood at 0, 6, 12, and 24 hours after CLP (n = 3 to 12 per group).
(F) Levels of IL-1b, IL-6, and TNF-a in serum 1 day after CLP (n = 8 or 9 per
group). (G and H) Immunohistochemical staining and flow cytometric
enumeration of monocytes (CD115) and neutrophils (Ly-6G) in entire lung (G)
and liver (H) tissue 1 day after CLP (n = 6; *P < 0.05, **P < 0.01, ***P < 0.001).
Error bars indicate means T SEM. Significance was assessed by log rank test
(A) or Mann-Whitney test [(B) to (H)]. Data are the result ofN ≥ 2 independent
experiments and are grouped.
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B cells (18–20). The remaining, non-B IL-3–
positive cells in the spleen and thymus were
CD4+ T cells, CD8+ T cells, and non-T, non-B
cells (fig. S8D).
By comparing IL-3 and GM-CSF, which are

two IRA B cell products, we determined that
the growth factors are not interdependent: In
response to CLP, the spleens of Csf2–/– mice ac-
cumulated IL-3–producing IRA B cells, whereas
Il3–/– mice accumulated GM-CSF–producing
IRA B cells (fig. S9A). On the one hand, in con-
trast to GM-CSF (19), IL-3 was not essential to
IgM production (fig. S9, B and C). On the other
hand, unlike IL-3, GM-CSF was dispensable for
emergency myelopoiesis (fig. S9D, E). The IL-3–
producing IRA B cells were readily visualized by

immunofluorescence and increased in frequency
after CLP (Fig. 3, G andH, and fig. S10). Thus, IRA
B cells can both protect against and aggravate
sepsis, depending on the particular growth factor
they produce.
Peritoneal B1 cells relocate to the spleen after

peritoneal LPS challenge (21) and differentiate to
IRA B cells (18). To determine whether IL-3+ B
cells arise similarly, we transferred B1 cells from
the peritoneum of naïve GFP+mice into the peri-
toneum of WT mice. Two days after CLP, IL-3+

(Fig. 3I) and GM-CSF+ B cells (fig. S11) accumu-
lated in the spleen, indicating peritoneal B cell
relocation, splenic accumulation, and IRA B cell
differentiation. To test whether IL-3–producing B
cells are important in sepsis, we transferred peri-

toneal B1 B cells fromWTor Il3–/–mice into Il3–/–

mice subjected to CLP and found increasedmono-
cyte levels, cytokine levels, and morbidity in WT
B cell recipients (Fig. 3J). Overall, the data show
that IL-3–producing IRA B cells induce emer-
gency myelopoiesis and potentiate septic shock
in a mouse sepsis model.
Because the validity of mouse sepsis models

asmirrors of human disease has been challenged
(22, 23), we sought to determine whether our ex-
perimental findings correlate with the patho-
genesis of human sepsis. First, we retrospectively
analyzed plasma from a cohort of septic patients
[RAMMSES cohort, n = 60 (table S1)] (24) and
found that IL-3 levels during the first 24 hours
after the onset of sepsis predicted death: Patients
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Fig. 2. IL-3 induces emergency hematopoiesis and potentiates the cytokine
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plots show the phenotype of IL-3+ and IL-3– cells retrieved from the spleen
after CLP. A representative plot of n = 5 is shown. (G) Immunofluorescence

microscopy of spleen tissue in the steady state and 1 day after CLP. (H) Co-
staining of representative IL-3+ cells with IgM. (I) Adoptive transfer of 1.5 × 106

peritoneal B1 B cells from GFP+ mice into WTmice subjected to CLP at the
time of cell transfer. Representative plots from flow cytometric analysis of
n = 3 mice are shown. (J) Adoptive transfer of 3 × 106 peritoneal B1 B cells from
WTor Il3–/– mice to the peritoneum of Il3–/– recipients subjected to CLP.
Data show the clinical score, number of Ly-6Chigh monocytes, neutrophils,
and serum cytokines 1 day after CLP (n = 5). (*P < 0.05, **P < 0.01). Error
bars indicate means T SEM. Significance was assessed by a Kruskal-Wallis
test with Dunn’s multiple comparison test (E) and a Mann-Whitney test (J).
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with IL-3 plasma levels >87.4 pg/ml at admis-
sion had a poor prognosis (fig. S12, A and B,
and table S2). We therefore decided to test, in a
new prospective cohort [SEPIL-3 cohort, n = 37
(table S3)], whether IL-3 and blood monocytes
correlate. In septic patientsmonitored over 28days,
blood leukocyte numbers peaked at the onset
of sepsis and decreased slowly thereafter (Fig.
4A). The increase was associated with a sharp
spike of plasma cytokines (Fig. 4B). Compared to
healthy volunteers, mean IL-3 in septic patient
plasma did not differ (Fig. 4C). Nevertheless, the
detectable levels of IL-3 correlated with circu-

lating monocyte levels in septic patients (Fig.
4D). Kaplan-Meier survival analysis showed that
patients with plasma levels of >89.4 pg/ml had
a poor prognosis (fig. S13 and table S4), thus
confirming the results from the RAMMSES co-
hort. Pooling the cohorts showed the impact of
IL-3 on survival to be even more striking (odds
ratio: 4.979; confidence interval: 1.680 to 14.738
and P = 0.001 for the Kaplan-Meier survival
curve) (Fig. 4E). The association remained sig-
nificant after adjusting for prognostic parame-
ters in multivariate analyses (table S5), whereas
multivariate logistic regression analyses con-

sistently showed improvement in the death
prediction when IL-3 was included, as shown
by a reduction of the Aikake information crite-
rion and an increase of McFadden’s pseudo
R2 (table S6). We also conducted flow cytometry
and immunofluorescence on human spleens
from patients undergoing splenectomy. By flow
cytometry, we found CD20+ HLADRint CD19high

IgMint/high B and CD3+ T cells to be producers
of IL-3 (Fig. 4F and fig. S14A). In tissue sections,
human spleens contained IL-3–producing CD19+

and IgM+ B cells (Fig. 4G and fig. S14, B and C),
suggesting that IL-3–producing IRA B cells
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Fig. 4. IL-3 is an independent early predictor for outcome in human sepsis.
(A) Total leukocyte number in nonseptic people and in septic patients at the
time of sepsis onset (0) and 1, 4, 7, 14, and 28 days later. (B) Plasma levels of
IL-1b, IL-6, and TNF-a in nonseptic people (n = 18) and in septic patients at the
time of sepsis onset (n = 37) and 1 day later (n = 17). (C) IL-3 plasma levels in
healthy people and in patients at sepsis onset and 1 day later. (D) Correlation
of IL-3 plasma levels with total blood monocytes and with CD14+ and CD16+

blood monocytes in septic patients with measurable IL-3 plasma levels. (E)
Kaplan-Meier analysis showing the survival of patients in the RAMMSES
and SEPIL-3 studies with IL-3 at >89.4 pg/ml (top quintile, measured within

1 day after sepsis onset) versus the survival of patients with IL-3 ≤ 89.4 pg/ml.
(F) Representative flow cytometry plot of n = 2 patients showing the identity
of IL-3–producing human splenocytes. (G) Immunofluorescence of human
spleen showing IL-3–producing B cells in high magnification (×60). A rep-
resentative immunofluorescence section of n = 6 spleens is shown (*P <
0.05, ****P < 0.0001). Error bars indicate means T SEM. Significance was
assessed by one-way ANOVA with Tukey’s multiple comparison test [(A) and
(C)], a Pearson correlation test (D), and log rank (E). Data in (A) to (D) are
from the SEPIL-3 cohort; data in (E) are pooled from the RAMMSES and
SEPIL-3 cohorts.
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amplify inflammation in humans as well as mice
(fig. S15).
Mortality fromsepsis rangesbetween30and50%

and is rising because of drug-resistant organisms,
a growing elderly population, and an increased
incidence of immunosuppression (25–28). The
failures of anti–Toll-like receptor 4, recombinant
activated protein C, and anti–TNF-a therapies in
clinical trialsnecessitatea rethinkingof sepsis’patho-
physiology (6, 29–33). Because many early-phase
inflammatory cytokines operate concurrently and
redundantly, identifying upstream triggersmay
generate therapies with broad downstream bene-
fits. Altogether, the evidence shown here supports
the hypothesis that IL-3 mediates experimental
and human sepsis, is a major upstream orches-
trator of the septic inflammatory phase, and can
be harnessed for therapeutic intervention.
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CIRCADIAN RHYTHMS

Time-restricted feeding
attenuates age-related cardiac
decline in Drosophila
Shubhroz Gill,1,2 Hiep D. Le,1 Girish C. Melkani,3* Satchidananda Panda1*

Circadian clocks orchestrate periods of rest or activity and feeding or fasting over
the course of a 24-hour day and maintain homeostasis. To assess whether a
consolidated 24-hour cycle of feeding and fasting can sustain health, we explored the
effect of time-restricted feeding (TRF; food access limited to daytime 12 hours every
day) on neural, peripheral, and cardiovascular physiology in Drosophila melanogaster.
We detected improved sleep, prevention of body weight gain, and deceleration of
cardiac aging under TRF, even when caloric intake and activity were unchanged. We
used temporal gene expression profiling and validation through classical genetics
to identify the TCP-1 ring complex (TRiC) chaperonin, the mitochondrial electron
transport chain complexes, and the circadian clock as pathways mediating the
benefits of TRF.

T
o determine whether a daily rhythm of
feeding and fasting without reducing caloric
intake can improve health metrics, we sub-
jected a 2-week-oldwild-type (WT)Oregon-R
strain (table S1) of Drosophila melanogaster

adults to ad libitum feeding (ALF) or 12-hour
time-restricted feeding (TRF) of a standard corn-
meal diet exclusively during daytime. At night-
time, the TRF cohorts were placed in vials with
1.1% agar to prevent desiccation (fig. S1A). The
daily food intake was equivalent in both groups,
although ALF flies consumed some of their food
during nighttime (Fig. 1A). Unlike ALF flies, the
TRF group did not gain body weight at 5 and
7 weeks of age (Fig. 1B). The ability to fly (flight
index) was slightly improved in the TRF group
(Fig. 1C). Although the total daily activity was
equivalent between both groups of flies (Fig. 1D),
the TRF flies were more active during daytime.
Sleep (defined as five consecutive minutes of

inactivity) (1) assessment revealed that flies on
TRF had less daytime sleep, but more nighttime
and more total sleep, than the ALF flies (Fig. 1E
and fig. S1).
Increase in sleep duration correlates with im-

proved cardiac function (2). Therefore, by high-
speed video imaging of ex vivo denervated hearts
bathed in artificial hemolymph (3), we mea-
sured the diameter of the beating Drosophila
heart at full relaxation and contraction and
the time interval between successive contrac-
tions to calculate cardiac function parameters
(Fig. 2A). At 3 weeks of age, the performance
of both ALF and TRF hearts was indistinguish-
able with equivalent heart period (HP), systolic
diameter (SD), systolic interval (SI), diastolic
diameter (DD), diastolic interval (DI), arrhyth-
mia index (AI), and heart contractility, mea-
sured as fractional shortening (FS) (Fig. 2, B
to F; fig. S2; and movie S1). In the next 2 weeks,
the cardiac performance in ALF flies exhibited
characteristic age-dependent deterioration (4),
with increased SI, DI, HP, and AI and reduced
DD, SD, and FS. TRF flies showed smaller changes
in these cardiac performance parameters in both
genders (fig. S2).
We investigated whether a limited period of TRF

early or late in life could attenuate age-dependent
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