Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis

Georg F. Weber,1,2+ Benjamin G. Chousterman,1,4 Shun He,5 Ashley M. Fenn,6 Manfred Nairz,1 Atsushi Anzai,1 Thorsten Brenner,3 Florian Uhle,2 Yoshiko Iwamoto,1 Clinton S. Robbins,1 Lorette Noiret,1 Sarah L. Maier,2 Tina Zinnchen,2 Nuh N. Rahbari,2 Sebastian Schöch,2 Anne Klotzsche-von Ameln,4 Triantafyllos Chavakis,4 Jürgen Weitz,2 Stefan Hofer,3 Markus A. Weigand,3 Matthias Nahrendorf,1 Ralph Weissleder,1,5 Filip K. Swirski1,5†

Sepsis is a frequently fatal condition characterized by an uncontrolled and harmful host reaction to microbial infection. Despite the prevalence and severity of sepsis, we lack a fundamental grasp of its pathophysiology. Here we report that the cytokine IL-3 identifies IL-3 as an orchestrator of emergency myelopoiesis, and reveals a new therapeutic target for treating sepsis.

To characterize the host response more completely, we performed time-course tissue, cellular, and molecular experiments. At 1 day after CLP, WT mice developed neutrophilia and inflammatory cytokine levels in serum (IL-1β, TNF-α, IL-6, and IL-8); however, these differences were not statistically significant (Fig. S5C) with increased markers of cytolysis in the lung (Fig. 1G) and liver (Fig. 1H); and IL-3+ mice had better clinical scores, with efficient microbial clearance, indicating that IL-3 is responsible for cytokine storm during septic shock (Fig. 2D). Although IL-3–/– mice were protected from sepsis, as seen in their lower mortality, even after adjusting for therapeutic target for treating sepsis.

To determine whether IL-3 can trigger severe sepsis in vivo, whether it can do so alone or in combination with infection, and whether it relies on its specific receptor, we injected (i) recombinant IL-3 (rIL-3) into otherwise healthy WT mice; (ii) anti-CD123 to WT mice subjected to CLP; and (iii) rIL-3 to rIL-3–/– mice subjected to CLP. rIL-3 augmented GMPs in the bone marrow and leukocyte numbers in the blood of healthy WT mice to levels akin to those in WT mice subjected to CLP (Fig. 2F). Despite this increase, rIL-3 per se did not induce a cytokine storm in the absence of infection (Fig. 2G), thus confirming our in vitro observations. Conversely, anti-CD123 attenuated cell numbers in WT CLP mice (Fig. 2F) and tended to decrease serum cytokines (although the differences were not statistically significant) (Fig. 2G) without depleting HSPCs (Fig. S7). rIL-3–/– mice receiving rIL-3 in the context of CLP augmented medullary GMP, circulating neutrophil, and Ly-6Chigh monocyte numbers (Fig. 2F). These increases corresponded to higher cytokine levels in serum (Fig. 2G). Ultimately, WT mice treated with anti-CD123 had a modest but significant improvement in survival (Fig. 2H), whereas rIL-3–/– mice receiving rIL-3 succumbed to infection and died as often as WT mice (Fig. 2D). These data confirm the effects of IL-3 on cell production and survival and identify the IL-3–CD123 axis as a potential new therapeutic target for treating sepsis.

Activated T cells (T) and cytokine storm (CS) produce IL-3 in the steady state, but the

1Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. 2Department of Visceral, Thoracic and Vascular Surgery, Technische Universität Dresden, Dresden, Germany. 3Department of Anesthesiology, Harvard Medical School, Boston, MA, USA. 4These authors contributed equally to this work. 5Corresponding author. E-mail: fsirski@kgm.harvard.edu (F.K.S.); georg.weber@uniklinikum-dresden.de (G.F.W.)
cytokine’s source in sepsis is unknown. mRNA profiling identified the spleen, thymus, and lymph nodes as hubs of basal IL-3 expression. After CLP, IL-3 mRNA progressively increased in the spleen, followed by the thymus and lymph nodes, with no signal in the bone marrow, lung, liver, peritoneum, or duodenum (Fig. 3A). As indicated by flow cytometry (Fig. 3, B and C) and Western blots (Fig. 3D), IL-3+ cells were CD19+ B cells. According to enzyme-linked immunosorbent assay, IL-3 levels increased in serum after CLP (Fig. 3E) but to a lesser extent in splenectomized mice (Fig. 3E).

Identifying B cells as sources of IL-3 prompted testing of whether IL-3+–/– cells were CD19–/– monocytes (CD115) and neutrophils (Ly-6G) in entire lung (G) but to a lesser extent in splenectomized mice (Fig. 3F and fig. S8B), as well as CD68+ LFA1+ CD284+ CD11b+ B cells (fig. S8C). This phenotype matches that of IRA B cells (fig. S8A), whose GM-CSF (granulocyte-macrophage colony-stimulating factor) product protects against sepsis and pneumonia via polyreactive immunoglobulin M (IgM) (18, 19). Phenotypic profiling showed that splenic IL-3 producers were IgMhigh CD23low CD19+ CD138+ VLA4+ (Fig. 3F and fig. S8B), as well as CD68+ LFA1+ CD284+ CD11b+ (fig. S8C). This phenotype matches that of IRA

Fig. 1. IL-3 is detrimental in experimental sepsis. Comparison of IL-3–/– and Balb/c (WT) mice during experimental sepsis using the CLP model. (A) Kaplan-Meier survival curve in mice not receiving antibiotics (n = 10 mice per group) and in mice receiving antibiotics (imipenem) (n = 12 or 13 per group). (B) Clinical score and body temperature (n = 6 to 10 per group). (C) Blood pressure. The blood pressure in WT mice was below the detection limit (n = 6 to 10 per group). (D) Bacterial titer of peritoneal cavity and blood (n = 3 to 10 per group). (E) Enumeration of neutrophils and Ly-6Chigh monocytes in 1 ml of blood at 0, 6, 12, and 24 hours after CLP (n = 3 to 12 per group). (F) Levels of IL-1β, IL-6, and TNF-α in serum 1 day after CLP (n = 8 or 9 per group). (G) and (H) Immunohistochromical staining and flow cytometric enumeration of monocytes (CD11b+) and neutrophils (Ly-6G+) in entire lung (G) and liver (H) tissue 1 day after CLP (n = 6; *P < 0.05, **P < 0.01, ***P < 0.001). Error bars indicate means ± SEM. Significance was assessed by log rank test (A) or Mann-Whitney test [(B) to (H)]. Data are the result of N ≥ 2 independent experiments and are grouped.
B cells (I8–20). The remaining, non-B IL-3–producing cells in the spleen and thymus were CD4+ T cells, CD8+ T cells, and non-T, non-B cells (fig. S8D).

By comparing IL-3 and GM-CSF, which are two IRA B cell products, we determined that the growth factors are not interdependent: In response to CLP, the spleens of Cyp2f2−/− mice accumulated IL-3–producing IRA B cells, whereas IL3−/− mice accumulated GM-CSF–producing IRA B cells (fig. S9A). On the one hand, in contrast to GM-CSF (I9), IL-3 was not essential to IgM production (fig. S9, B and C). On the other hand, unlike IL-3, GM-CSF was dispensable for emergency myelopoiesis (fig. S9, D and E). The IL-3–producing IRA B cells were readily visualized by immunofluorescence and increased in frequency after CLP (Fig. 3, G and H, and fig. S10). Thus, IRA B cells can both protect against and aggravate sepsis, depending on the particular growth factor they produce.

Peritoneal B1 cells relocate to the spleen after peritoneal LPS challenge (22) and differentiate to IRA B cells (I8). To determine whether IL-3–producing IRA B cells arise similarly, we transferred B1 cells from the peritoneum of naïve GFP mice into the peritoneum of WT mice. Two days after CLP, IL-3– (fig. S11) and GM-CSF+ B cells (fig. S11) accumulated in the spleen, indicating peritoneal B cell relocation, splenic accumulation, and IRA B cell differentiation. To test whether IL-3–producing B cells are important in sepsis, we transferred peritoneal B1 cells from WT or IL3−/− mice into IL3−/− mice subjected to CLP and found increased monocyte levels, cytokine levels, and morbidity in WT B cell recipients (Fig. 3J). Overall, the data show that IL-3–producing IRA B cells induce emergency myelopoiesis and potentiate septic shock in a mouse sepsis model.

Because the validity of mouse sepsis models as mirrors of human disease has been challenged (22, 23), we sought to determine whether our experimental findings correlate with the pathogenesis of human sepsis. First, we retrospectively analyzed plasma from a cohort of septic patients [RAMMSSES cohort, n = 60 (table S1)] (24) and found that IL-3 levels during the first 24 hours after the onset of sepsis predicted death: Patients

![Fig. 2. IL-3 induces emergency hematopoiesis and potentiates the cytokine storm in sepsis.](image-url)
Fig. 3. IRA B cells are major sources of IL-3 in sepsis. (A) IL-3 mRNA expression in the indicated organs during a steady state and 3, 6, 12, and 24 hours after CLP (n = 6 to 8). (B) Identification of IL-3–producing cells in the spleen 4 days after CLP. (C) Enumeration of IL-3–producing B cells in spleen and thymus in a steady state and 1 and 4 days after CLP (n = 5). (D) Western blot showing IL-3 expression by B cells and non-B cells sorted from the spleen and thymus 1 day after CLP. (E) IL-3 serum levels in a steady state and 1 day after CLP with and without splenectomy (SPx) (n = 3 to 6). (F) Flow cytometric plots showing the phenotype of IL-3+ and IL-3− cells retrieved from the spleen after CLP. A representative plot of n = 5 is shown. (G) Immunofluorescence microscopy of spleen tissue in the steady state and 1 day after CLP. (H) Co-staining of representative IL-3+ cells with IgM. (I) Adoptive transfer of 1.5 × 10⁶ peritoneal B1 B cells from GFP+ mice into WT mice subjected to CLP at the time of cell transfer. Representative plots from flow cytometric analysis of n = 3 mice are shown. (J) Adoptive transfer of 3 × 10⁶ peritoneal B1 B cells from WT or IL-3−/− mice to the peritoneum of IL-3−/− recipients subjected to CLP. Data show the clinical score, number of Ly-6C+ monocytes, neutrophils, and serum cytokines 1 day after CLP (n = 5). (*P < 0.05, **P < 0.01). Error bars indicate means ± SEM. Significance was assessed by a Kruskal-Wallis test with Dunn’s multiple comparison test (E) and a Mann-Whitney test (J).
with IL-3 plasma levels >87.4 pg/ml at admission had a poor prognosis (fig. S12A, A and B, and table S2). We therefore decided to test, in a new prospective cohort (SEPIL-3 cohort, n = 37 (table S3)), whether IL-3 and blood monocytes correlate. In septic patients monitored over 28 days, blood leukocyte numbers peaked at the onset of sepsis and decreased slowly thereafter (Fig. 4A). The increase was associated with a sharp spike of plasma cytokines (Fig. 4B). Compared to healthy volunteers, mean IL-3 in septic patient plasma did not differ (Fig. 4C). Nevertheless, the detectable levels of IL-3 correlated with circulating monocyte levels in septic patients (Fig. 4D). Kaplan-Meier survival analysis showed that patients with plasma levels of >89.4 pg/ml had a poor prognosis (fig. S13 and table S4), thus confirming the results from the RAMMSES cohort. Pooling the cohorts showed the impact of IL-3 on survival to be even more striking (odds ratio: 4.979; confidence interval: 1.680 to 14.738 and P = 0.001 for the Kaplan-Meier survival curve) (Fig. 4E). The association remained significant after adjusting for prognostic parameters in multivariate analyses (table S5), whereas multivariate logistic regression analyses consistently showed improvement in the death prediction when IL-3 was included, as shown by a reduction of the Aikake information criterion and an increase of McFadden’s pseudo R² (table S6). We also conducted flow cytometry and immunofluorescence on human spleens from patients undergoing splenectomy. By flow cytometry, we found CD20⁺ CD11b⁺ CD19⁺ high IgM⁺ high B and CD3⁺ T cells to be producers of IL-3 (Fig. 4F and fig. S14). In tissue sections, human spleens contained IL-3–producing CD19⁺ and IgM⁺ B cells (Fig. 4G and fig. S14, A and C), suggesting that IL-3–producing IRA B cells
amplify inflammation in humans as well as mice (fig. S15).

Mortality from sepsis ranges between 30 and 50% and is rising because of drug-resistant organisms, a growing elderly population, and an increased incidence of immunosuppression (25–28). The failures of anti–Toll-like receptor 4, recombinant activated protein C, and anti–TNF-α therapies in clinical trials necessitate a rethinking of sepsis’ pathophysiology (6, 29–33). Because many early-phase inflammatory cytokines operate concurrently and redundantly, identifying upstream triggers may generate therapies with broad downstream benefits. Altogether, the evidence shown here supports the hypothesis that IL-1 mediates experimental and human sepsis, is a major upstream orchestrator of the septic inflammatory phase, and can be harnessed for therapeutic intervention.

CIRCADIAN RHYTHMS

Time-restricted feeding attenuates age-related cardiac decline in Drosophila

Shubhroz Gill,1,2 Hiep D. Le,1 Girich C. Melkani,3,4 Satchidananda Panda1,5

Circadian clocks orchestrate periods of rest or activity and feeding or fasting over the course of a 24-hour day and maintain homeostasis. To assess whether a consolidated 24-hour cycle of feeding and fasting can sustain health, we explored the effect of time-restricted feeding (TRF; food access limited to daytime 12 hours every day) on neural, peripheral, and cardiovascular physiology in Drosophila melanogaster. We detected improved sleep, prevention of body weight gain, and deceleration of cardiac aging under TRF, even when caloric intake and activity were unchanged. We used temporal gene expression profiling and validation through classical genetics to identify the TCP-1 ring complex (TRIC) chaperonin, the mitochondrial electron transport chain complexes, and the circadian clock as pathways mediating the benefits of TRF.

To determine whether a daily rhythm of feeding and fasting without reducing caloric intake can improve health metrics, we subjected a 2-week-old wild-type (WT) Oregon-R strain (table S1) of Drosophila melanogaster adults to ad libitum feeding (ALF) or 12-hour time-restricted feeding (TRF) of a standard cornmeal diet exclusively during daytime. At nighttime, the TRF cohorts were placed in vials with 1.1% agar to prevent desiccation (fig. S1A). The daily food intake was equivalent in both groups, although ALF flies consumed some of their food during nighttime (Fig. 1A). Unlike ALF flies, the TRF group did not gain body weight at 5 and 7 weeks of age (Fig. 1B). The ability to fly (flight index) was slightly improved in the TRF group (Fig. 1C). Although the total daily activity was equivalent between both groups of flies (Fig. 1D), the TRF flies were more active during daytime. Sleep (defined as five consecutive minutes of inactivity) (1) assessment revealed that flies on TRF had less daytime sleep, but more nighttime and more total sleep, than the ALF flies (fig. 1E and fig. S1).

Increase in sleep duration correlates with improved cardiac function (2). Therefore, by high-speed video imaging of ex vivo denervated hearts bathed in artificial hemolymph (3), we measured the diameter of the beating Drosophila heart at full relaxation and contraction and the time interval between successive contractions to calculate cardiac function parameters (Fig. 2A). At 3 weeks of age, the performance of both ALF and TRF hearts was indistinguishable with equivalent heart period (HP), systolic diameter (SD), systolic interval (SI), diastolic diameter (DD), diastolic interval (DI), arrhythmia index (AI), and heart contractility, measured as fractional shortening (FS) (Fig. 2, B to F; fig. S2; and movie S1). In the next 2 weeks, the cardiac performance in ALF flies exhibited characteristic age-dependent deterioration (4), with increased SI, DI, HP, and AI and reduced DD, SD, and FS. TRF flies showed smaller changes in these cardiac performance parameters in both genders (fig. S2).

We investigated whether a limited period of TRF early or late in life could attenuate age-dependent

REFERENCES AND NOTES

1. Y. C. Yang et al., Cell 47, 3–10 (1886).
24. T. Bremer et al., Crit. Care 18, 681 (2014).
Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis
Georg F. Weber et al.
Science 347, 1260 (2015);
DOI: 10.1126/science.aaa4268