
Article
Large-Scale Topological Changes Restrain
Malignant Progression in Colorectal Cancer
Graphical Abstract
Normal
nuclei

Tumor
nuclei

Normal nucleus

Tumor/aging 

Human colon

Cancer Genome Topology

Repression

DNA hypomethylation

A compartment
Intermediate
compartment

B compartment

Tumor suppression

Normal cells

Excessive replication

Oncogene

ERV/CGA

Activation

Impact of 
compartment shift
Highlights
d Hierarchical layers of nuclear architecture are altered in

colorectal tumors

d An intermediate genome compartment is defined in primary

tissues

d Compartmental reorganization and hypomethylation occur

in tumors and aging cells

d Reorganization is associated with tumor-suppressive

transcriptional programs
Johnstone et al., 2020, Cell 182, 1474–1489
September 17, 2020 ª 2020 Elsevier Inc.
https://doi.org/10.1016/j.cell.2020.07.030
Authors

Sarah E. Johnstone, Alejandro Reyes,

Yifeng Qi, ..., Bin Zhang, Martin J. Aryee,

Bradley E. Bernstein

Correspondence
aryee.martin@mgh.harvard.edu (M.J.A.),
bernstein.bradley@mgh.harvard.
edu (B.E.B.)

In Brief

Integrated analyses of genome

topological, epigenetic, and

transcriptional features of colorectal

tumors highlight substantial genome

compartmental reorganization

associated with tumor-suppressive

rather than oncogenic transcriptional

outcomes.
ll

mailto:aryee.martin@mgh.harvard.edu
mailto:bernstein.bradley@mgh.harvard.edu
mailto:bernstein.bradley@mgh.harvard.edu
https://doi.org/10.1016/j.cell.2020.07.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2020.07.030&domain=pdf


ll
Article

Large-Scale Topological Changes Restrain
Malignant Progression in Colorectal Cancer
Sarah E. Johnstone,1,2,3,10 Alejandro Reyes,2,4,5,10 Yifeng Qi,2,6 Carmen Adriaens,1,2,3 Esmat Hegazi,1,2,3 Karin Pelka,2,3

Jonathan H. Chen,1,2,3 Luli S. Zou,2,4,5 Yotam Drier,7 Vivian Hecht,2 Noam Shoresh,2 Martin K. Selig,1 Caleb A. Lareau,1,2,8

Sowmya Iyer,1 Son C. Nguyen,9 Eric F. Joyce,9 Nir Hacohen,2,3 Rafael A. Irizarry,2,4,5 Bin Zhang,2,6 Martin J. Aryee,1,2,3,5,*
and Bradley E. Bernstein1,2,3,11,*
1Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
2Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
3Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
4Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA 02215, USA
5Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
6Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
7The Lautenberg Center for Immunology and Cancer Research, The Hebrew University, Jerusalem, Israel
8Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02215, USA
9Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
10These authors contributed equally
11Lead Contact

*Correspondence: aryee.martin@mgh.harvard.edu (M.J.A.), bernstein.bradley@mgh.harvard.edu (B.E.B.)
https://doi.org/10.1016/j.cell.2020.07.030
SUMMARY
Widespread changes to DNA methylation and chromatin are well documented in cancer, but the fate of
higher-order chromosomal structure remains obscure. Herewe integrated topologicalmaps for colon tumors
and normal colons with epigenetic, transcriptional, and imaging data to characterize alterations to chromatin
loops, topologically associated domains, and large-scale compartments. We found that spatial partitioning
of the open and closed genome compartments is profoundly compromised in tumors. This reorganization is
accompanied by compartment-specific hypomethylation and chromatin changes. Additionally, we identify a
compartment at the interface between the canonical A and B compartments that is reorganized in tumors.
Remarkably, similar shifts were evident in non-malignant cells that have accumulated excess divisions.
Our analyses suggest that these topological changes repress stemness and invasion programs while
inducing anti-tumor immunity genes and may therefore restrain malignant progression. Our findings call
into question the conventional view that tumor-associated epigenomic alterations are primarily oncogenic.
INTRODUCTION

For over a century, pathologists have observed changes in the

shape, size, and chromatin texture of cancer cell nuclei (Zink

et al., 2004). Nuclear features help determine cancer subtype

and grade, with significant effects on prognosis and therapy.

However, despite their diagnostic and clinical importance, the

molecular underpinnings of these cancer-associated morpho-

logical changes remain poorly understood.

Molecular and genetic studies have documented wide-

spread epigenetic defects in human tumors, including chro-

matin regulator mutations, DNA methylation changes, and

altered enhancer landscapes (Baylin and Jones, 2016). Certain

cancers also harbor mutations of proteins that regulate higher-

order chromosomal structure (‘‘genome topology’’), including

CTCF and cohesin subunits (Corces and Corces, 2016). Focal

topological alterations drive oncogenic transcriptional pro-

grams in specific contexts (Flavahan et al., 2016, 2019; Hnisz

et al., 2016; Kloetgen et al., 2020). Despite this, genome topol-
1474 Cell 182, 1474–1489, September 17, 2020 ª 2020 Elsevier Inc.
ogy and nuclear organization in human tumors are largely

uncharted.

Technological innovations, including Hi-C (Rao et al., 2014),

have revealed hierarchical layers of spatial organization (Bick-

more and van Steensel, 2013; Dekker and Misteli, 2015; Rowley

and Corces, 2018). Chromatin loops occur when distant loci on

the linear chromosome are in frequent contact and typically

involve interactions between CTCF-bound sites (CTCF loops)

and/or between enhancers and promoters (E-P loops). Topolog-

ically associating domains (TADs) are sub-megabase regions

partitioned by boundary elements often bound by CTCF and co-

hesin. Finally, the genome is grossly partitioned into two large-

scale compartments: an open, transcriptionally active A

compartment and a compact, relatively silent B compartment.

Colorectal adenocarcinoma, the fourth most common epithe-

lial tumor, is a well-characterized model for cancer epigenetics.

These tumors exhibit profoundly altered DNA methylation land-

scapes, including loss of methylation from large genomic

‘‘blocks’’ that cover over half of the genome (Berman et al.,
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2011; Hansen et al., 2011). The functional implications of hypo-

methylation remain obscure, but it may impact genome stability

and/or transcriptional activity (Baylin and Jones, 2016).

Conversely, CpG island hypermethylation occurs in a subset of

colon tumors, termed the CpG island methylator phenotype

(CIMP), and is associated with promoter silencing (Hinoue

et al., 2012; Toyota et al., 1999). However, our understanding

of these epigenomic changes and their relationship to genome

topology has been hindered by a lack of data for primary tumors.

Here we mapped genome topology across a cohort of colon

tumors, normal colons, and colon cancer cell lines and

compared successive layers of topology. We focus on large-

scale reorganization of the conventional genome compartments

A and B and characterize an intermediate compartment at their

interface. Remarkably, compartmental reorganization is associ-

atedwith repression of stem cell, invasion, andmetastasis genes

and induction of genes associated with anti-tumor immunity. Our

results suggest that the most profound topological alterations in

tumors are actually a consequence of accumulated cell divisions

and that they may have a tumor-suppressive role.

RESULTS

Maps of DNA Methylation, Chromatin State, and
Topology in Human Tumors
To understand how nuclear architecture is altered in cancer, we

profiled genome topology along with DNA methylation, chro-

matin modifications, and CTCF in primary colon tumors, normal

colons, and colon cancer cell lines (Figure 1A). Our clinical cohort

included 26 tumors and 7 normal colon tissue samples (Table

S1). Our in vitro models included colon cancer cell lines

(HCT116, SW480, RKO, and LS-174T), a line derived from

normal colon (FHC), and primary fibroblasts (WI-38). Our full da-

taset comprises 175 libraries and 28 billion sequencing reads for

Hi-C, HiChIP, bisulfite sequencing, chromatin immunoprecipita-

tion sequencing (ChIP-seq) and RNA sequencing (RNA-seq).

We performed hybrid-capture bisulfite sequencing on 26

tumors, 3 normal colons, and 5 cell lines. Although only two tu-

mors had CpG island hypermethylation (CIMP) (Figure S1A), all

tumors exhibited degrees of hypomethylation across expansive

genomic regions, termed ‘‘hypomethylated blocks’’ (Figure S1B;

Berman et al., 2011; Hansen et al., 2011). We also inferred copy

number variants (CNVs) for each tumor (Table S2) and controlled

for CNV-related variability in further analyses by incorporating

terms for copy number estimates into our linear models and veri-

fying results in CNV-stable regions and tumors (STAR Methods).

We integrated high-resolution topological maps and epige-

nomics data to investigate successive layers of genome organi-

zation, from chromatin loops to TADs to large-scale genome

compartments, in tissues, tumors, and cell lines.

E-P Loops Are Associated with Oncogenic
Transcriptional Programs
We began by identifying loops that could influence transcrip-

tional states in tumors. HiChIP assays targeting the cohesin sub-

unit SMC1 (Mumbach et al., 2016) reveal CTCF-CTCF loops,

which contribute to TAD boundaries, as well as E-P loops, which

are hypothesized to mediate enhancer gene activation (Stad-
houders et al., 2019). We identified 25,125 loops in normal colon

or tumors and annotated the subset that connects an histone H3

lysine 27 acetylation (H3K27ac) peak (enhancer-like) to an anno-

tated promoter as E-P loops (n = 14,121). Differential analysis re-

vealed 571 E-P loops that are stronger in tumors and 248 that are

weaker in tumors (Figure 1B). To relate these differential loops to

transcription, we evaluated the expression of the corresponding

genes in our cohort and across 521 samples from The Cancer

Genome Atlas (TCGA) (Cancer Genome Atlas Network, 2012).

Genes connected to E-P loops that were stronger in tumors

were upregulated in tumors, whereas genes connected to E-P

loops that were weaker in tumors were downregulated (Figures

1C and S2A; Table S3). This association was evident even

when excluding loci subject to CNVs (Figure S2B).

Several topological alterations involved known oncogenes or

tumor suppressors. For example, although the locus encoding

the receptor tyrosine kinase oncogene EPHA2 (Dunne et al.,

2016) contains multiple enhancers in normal colon and tumors,

the gene is connected to a strong enhancer by a tumor-associ-

ated E-P loop (Figures 1D and S2C). Accordingly, EPHA2 is up-

regulated in colon tumors (Figures S2D and S2E). Conversely,

the PDCD4 tumor suppressor (Wang et al., 2017) loses an E-P

loop to a distal enhancer and is downregulated in tumors (Fig-

ures 1E and S2F–S2H). The annotated E-P loops can also facil-

itate interpretation of single-nucleotide polymorphisms (SNPs)

associated with colon cancer risk (Figures S2I–S2K; Table S4;

STAR Methods).
Topological Boundaries Are Largely Retained in Tumors
A next layer of topological organization involves TADs and their

boundaries. TADs are evident in Hi-C maps as sub-megabase-

scale regions with increased intra-domain interactions (Fig-

ure 1F; Dixon et al., 2015). CTCF occupies and contributes

to the stability of many TAD boundaries (Rao et al., 2014;

Nora et al., 2017). We used Hi-C data to assess the locations

and integrity of TAD boundaries genome wide (STAR

Methods). Boundary location and strength were largely

concordant between tumors, normal controls, and cell lines

(Figures 1G and S3A–S3D), consistent with previous studies

of cell lines and non-malignant tissues (Dixon et al., 2012;

Krefting et al., 2018; Nora et al., 2012; Schmitt et al., 2016). Tu-

mors, on average, shared 92% of TAD boundaries with normal

colon and 89% with the cell lines. Visual inspection revealed

that discordant boundary calls were most often caused by

subtle differences in strength rather than complete bound-

ary loss.

Prior studies have shown that CTCF boundaries may be dis-

rupted by genetic deletion or hypermethylation (Flavahan et al.,

2016, 2019; Hnisz et al., 2016; Modrek et al., 2017). Consistently,

we identified more than 100 TAD boundaries that gain DNA

methylation and lose CTCF binding in our hypermethylated tu-

mors (Figures S3E and S3F). The integrity of these boundaries

was compromised, as evidenced by weaker ‘‘peaks’’ on the

Hi-C contact maps (Figure S3G) and more frequent cross-

boundary E-P interactions in HiChIP data (Figure S3H). However,

the transcriptional consequences of these boundary losses ap-

peared to be relatively limited (Figure S3I).
Cell 182, 1474–1489, September 17, 2020 1475



A

B

F G

C D E

Figure 1. Integrated Topological Maps Reveal Tumor-Specific Chromatin Loops and Stable TAD Structure

(A) Schematic of hierarchical genome organization with indication of genomic scale (left) and summary of genome-wide assays (center) and models (right).

(B) Volcano plot presenting a differential analysis of loops between tumors and normal samples. Loops, represented as dots, with significantly stronger or weaker

interactions in tumors compared with normal colon are highlighted in red and green, respectively.

(C) Boxplots depicting expression fold change (log2) between tumors and normal samples (y axis) for genes engaged in enhancer-promoter (E-P) loops. Genes

are stratified by change in E-P loop strength between tumors and normal colon (x axis).

(D) Genomic view of the EPHA2 locus (�130 kb), showing SMC1 HiChIP loops (arcs) and H3K27ac enrichment for normal colon (green) and colon tumor (purple).

The width of the arcs corresponds to the average loop strength summarized for the set of 2 normal and 7 colon samples. An asterisk indicates the differential loop

(STAR Methods).

(E) Genomic view of the PDCD4 locus (�100 kb) as in (D).

(F) Hi-C contact map showing pairwise contact frequencies (red heat) between genomic positions across chromosome 7 (rows, columns) in normal colon. Top: Hi-C

eigenvector (PC1) based on long-range interactions demarcates compartments A (positive values, blue) and B (negative values, yellow). Right: inset with amagnified

viewof a representative region reveals TAD structures (highlighted byblack triangles). Rotation of this inset by 45� yields a horizontal display of TADstructures (seeG).

(G) Horizonal heatmaps showing local Hi-C contact patterns (red heat) across chromosome 14 for normal colon (green), colon tumors (purple), and cell lines

(black). Exemplar TAD boundaries are indicated by black arrows.
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In summary, topological boundaries were largely conserved

across colon tumors, normal colons, and cell lines, with the

exception of a relatively small set of boundaries compromised

in hypermethylated tumors.

Megabase-Scale Compartment Structure Is
Reorganized in Tumors
The genome is partitioned into open A and closed B spatial com-

partments. TADs in the same compartment have a greater ten-

dency to self-interact, whereas inter-compartmental interactions

are disfavored (Rao et al., 2014), resulting in the characteristic

checkerboard pattern of Hi-C maps (Figure 1F). We used a stan-

dard eigenvector-based method to assign compartments for

each of our Hi-C datasets. In contrast to the striking conservation

of TAD boundaries, compartment assignments varied between

samples. For example, most cell lines were distinct from normal

tissues and tumors (Figures 2A, 2B, S4A, and S4B).

Comparisons also revealed widespread differences between

colon tumors and normal colon (Figure 2B). To understand

these differences, we directly compared Hi-C interaction

matrices. Although compartment assignments were mostly

concordant between normal colon and tumors (Figure 2A),

long-range interactions between compartments A and B were

more frequent in tumors (Figure 2C). These differential interac-

tion patterns were evident regardless of whether the underlying

compartment assignments were derived from normal colon or

tumor Hi-C data (Figure S4C) and translated to a genome-

wide increase in inter-compartment interaction in tumors (p <

0.005) (Figure S4D).

Prior studies have related compartments with nuclear posi-

tioning (Falk et al., 2019; Wang et al., 2016). Compartment B cor-

relates with lamina-associated domains (LADs), which are

located at the nuclear periphery and may be damaged in ag-

ing-related disease, senescence, and cancer (Sakthivel and

Sehgal, 2016; Schreiber and Kennedy, 2013; van Steensel and

Belmont, 2017). Conversely, active loci tend to localize to the nu-

clear interior. In principle, relative nuclear positioning of genomic

loci can be inferred from Hi-C data. We therefore used a

maximum entropy approach to derive topological models for

normal colon and tumor nuclei (STAR Methods). Our method

models the genome at 1-Mb resolution as a 3-dimensional poly-

mer, taking into account linear constraints inherent to the DNA.

We then compute an in silico Hi-C map for each polymer model

and repeat the process iteratively until the computed map con-

verges on the experimental Hi-C data (Figure 2D; STAR

Methods).

Polymer models optimized to the normal colon Hi-C data

separated compartments A and B and positioned compartment

B peripherally (Figures 2E, S4E, and S4F), consistent with expec-

tation. However, applying the same modeling approach to the

colon tumor Hi-C data yielded a strikingly different result (Figures

2F and S4G). In these models, both compartments were distrib-

uted heterogeneously throughout the nucleus. We verified that

these changes were not solely driven by genetic alterations by

restricting analysis to stable chromosomes and a genomically

stable tumor (Figures S4H and S4I). These results suggest that

the asymmetric radial positioning of compartments A and B is

profoundly altered in tumors.
To further investigate, we directly visualized chromatin and

specific genomic loci. First, we imaged specimens by transmis-

sion electron microscopy, which revealed characteristic epithe-

lial structures and organization. In epithelial nuclei from normal

colon, electron-dense heterochromatin was juxtaposed to the

nuclear membrane, consistent with peripheral lamina associa-

tion, whereas characteristic light-staining euchromatin was

visible throughout the nuclear interior (Figures 2G and S4K). In

marked contrast, epithelial tumor nuclei had large dark-staining

heterochromatin foci dispersed throughout their interiors (Fig-

ures 2H, 2I, and S4K; STAR Methods).

We next evaluated the positioning of specific genomic regions

using DNA fluorescence in situ hybridization (FISH). We de-

signed �26,000 Oligopaint probes targeting loci on chromo-

some 12 that were assigned to compartment A or B according

to Hi-C (Figure S4J; STAR Methods; Beliveau et al., 2012). We

then labeled the respective compartments with secondary fluo-

rescent probes and visualized them by Airyscan confocal imag-

ing. Chromosome 12 territories were generally positioned

peripherally, consistent with prior studies (Bolzer et al., 2005).

To quantify radial distributions of the A and B compartments,

we scored probe signals according to their intensity in 20 radial

bins starting from the nuclear center in 47 nuclei from 2 normal

colon samples and 82 nuclei from 2 tumors. Although the local-

ization of fluorescence signals varied, compartment B signals

were strongly skewed toward the periphery of normal colon

nuclei, whereas compartment A signals were more evenly

distributed (Figures 2J and 2L). In contrast, in tumor nuclei,

compartment B signals lost their peripheral skew and assumed

a distribution similar to compartment A (Figures 2K and 2L).

Hence, concordant analyses based on Hi-C polymer models,

electron microscopy, and multi-color FISH imaging indicate pro-

found compartmental reorganization in tumor nuclei. Spatial par-

titioning between compartments is compromised. Compartment

B relocates from its physiologic peripheral position toward the

nuclear interior.

A Genome Compartment with Intermediate Properties
Despite widespread differences in compartmental interactions,

A/B assignments were relatively consistent between tumor and

normal colon. This prompted us to more closely examine the

Hi-C eigenvector, which is a continuous rather than a dichoto-

mous measure. We observed hundreds of large genomic inter-

vals, hundreds of kilobases in size, with eigenvector values

that were lower in tumors than in normal colon (Figures 3A and

3B). The majority of these intervals were assigned to compart-

ment A in tumor and normal colon because they had positive

eigenvectors. However, quantitative analysis indicated that

these regions shifted their interactions toward compartment B

in tumors.

When we examined the transitioning regions, we observed

that they exhibited a striking loss of DNA methylation in tumors

and, in fact, largely coincided with hypomethylated blocks (Fig-

ures 3A, 3B, and S5A). This was unexpected because hypome-

thylated blocks have been primarily associated only with

compartment B (Berman et al., 2011; Fortin and Hansen, 2015;

Hansen et al., 2011). We found that hypomethylated blocks,

which tend to span single or consecutive TADs, covered a full
Cell 182, 1474–1489, September 17, 2020 1477
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Figure 2. Compromised Partitioning and Positioning of Genome Compartments in Tumors

(A) Hi-C eigenvectors (PC1) based on long-range interactions demarcate compartments A (positive values, blue) and B (negative values, yellow) across a 45-Mb

region of chromosome 6. Data show eigenvectors for normal colon (green), colon tumors (purple), and cell lines (black).

(B) Heatmap showing pairwise correlations between the first Hi-C eigenvector (blue heat) in normal colon (green), colon tumors (purple), and cell lines (gray).

Samples (rows, columns) are ordered according to complete linkage hierarchical clustering (top).

(C) Heatmap showing fold change (log2) in Hi-C contact frequencies between colon tumors and normal colon across chromosome 1. Data are based on an

average of normal colons (n = 4) and tumors (n = 7). Interactions that increase in tumors (red) or decrease in tumors (green) are evident. Top left: the Hi-C

eigenvector indicates compartment assignments in normal colon (A, blue; B, yellow).

(D) Schematic of the maximum entropy modeling approach, in which structural models of genome organization are generated and iteratively refined to improve

the correlation between Hi-C maps derived from these models in silico and the actual experimental Hi-C data.

(E) Whole-nucleus maximum entropy models (1-Mb resolution) for a representative normal colon sample (N1), showing compartment A in blue and compartment

B in yellow.

(F) Whole-nucleus maximum entropy models (1-Mb resolution) for a representative colon tumor sample (T1) as in (E).

(G) Representative transmission electron microscopy (TEM) image of nuclei from normal colon epithelium, showing electron dense heterochromatin (HC) along

the nuclear membrane and internally distributed euchromatin (EC). Scale bar, 1 um.

(H) Representative EM image of colon tumor nucleus labeled as in panel (G). Scale bar, 1 um.

(I) Top: Schematic of strategy for quantifying the internal HC in nuclei imaged by EM. Bottom: Histogram shows fraction of nuclei (y axis) that have indicated

percentage of internal HC. Normal (green) reflects 102 epithelial cell nuclei from 3 normal colon specimens. Tumor (purple) reflects 184malignant cell nuclei from 3

colon tumors. Two-sided nested t test, p = 0.006.

(J and K) Representative image of chromosome 12 DNA FISH in nuclei from normal colon epithelial cells (J) andmalignant tumor cells (K), labeling compartment A

and B regions in blue and yellow, respectively.

(L) Histogram showing a fraction of the signal from compartment B DNA FISH probes in successive radial bins from the center to the periphery of the nuclei.

Normal (green) reflects 47 epithelial cell nuclei from 2 normal colon specimens. Tumor (purple) reflects 82 malignant cell nuclei from two tumors for which

chromosome 12 was copy number stable (T1 and T4). Innermost bins 1–10 were aggregated.
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19% of compartment A (Figures 3C, 3D, S5B, and S5C; mean

methylation difference, >10%; n = 1,032; mean size. 217 kb). Ex-

amination of Hi-C contact maps revealed that these noncanoni-
1478 Cell 182, 1474–1489, September 17, 2020
cal regions do not fit the typical checkerboard pattern that arises

from long-range compartmental interactions (Figure 3E). Rather,

they have a distinct contact pattern characterized by intermediate



Figure 3. An Intermediate Compartment I Is Also Reorganized in Tumors

(A) Heatmap depicting the Hi-C eigenvector used to define compartments, as in Figure 2A, except with the eigenvector values shown as heatmaps (blue, positive;

yellow, negative). Data are shown for a �2.3-Mb region (x axis) for normal colon samples (rows with green labels) and colon tumors (rows with purple labels).

Hypomethylated blocks are indicated (black bars).

(B) Heatmap depicting the first eigenvector for a 5-Mb region on chromosome 3 as in (A).

(C) Hi-C contact map (top) and first eigenvector (PC1; center) for a representative tumor sample. DNAmethylation levels of low-density (open-sea) CpGs (bottom)

are shown for three representative normal colon samples (green) and three representative tumors (purple). The represented region on chromosome 17 contains a

3.6-Mb TAD assigned to compartment B (black square) with a hypomethylated block (gray highlight).

(D) Hi-C contact map, first eigenvector (PC1) and DNA methylation are shown for a 200 kb TAD assigned to compartment A with a hypomethylated block (data

presented as in panel (C).

(E) Hi-C contact map for chromosome 1 for a representative normal colon sample. Top left: colored bars indicate genomic regions assigned to compartment A

(blue), compartment I (light blue), or compartment B (yellow). Magnified panels for representative regions highlight the intermediate long-range inter-compart-

mental interaction pattern typical of compartment I.

(F) First and second eigenvectors of the chromosome 1 Hi-C matrix for normal colon. Each point represents one 100-kb bin, colored by compartment.

(legend continued on next page)
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interactions with both conventional compartments (Figures 3E)

and preferential self-interactions (Figure S5D). This distinct

contact pattern was evident in normal (Figures S5E and S5F)

and tumor samples (Figures S5G and S5H).

We considered that these hypomethylated A blocks might

reflect an intermediate compartment ‘‘I’’ that interacts with

both canonical compartments at baseline and shifts toward

B in tumors (Figure S5I). In support, we found that compart-

ment I regions could be distinguished on multiple chromo-

somes by examining additional eigenvectors of the Hi-C

matrix (Figures 3F and S5J–S5L; STAR Methods). Although

the order of the declarative eigenvector varied between chro-

mosomes, this suggested that compartment I can be distin-

guished from structural data alone. Furthermore, our polymer

models for normal colon placed compartment I in an interme-

diate nuclear position between compartments A and B

(Figure 3G).

To investigate further, we visualized compartment I regions by

multi-color FISH. We designed a third set of�14,500 oligonucle-

otide probes complementary to compartment I regions on chro-

mosome 12 and a corresponding secondary probe with a

distinct fluorophore (Figure S4J). We then used three-color

FISH imaging to simultaneously localize compartment A, B,

and I regions in HCT116 colon cancer cells. We selected

HCT116 cells because chromosome 12 is copy number stable,

and the loci targeted by our probes had similar compartment

assignments as our primary tissues (Table S2; Figure S5M).

We visualized and quantified the radial positioning of each

compartment in 305HCT116 nuclei.We found that compartment

I is spatially intermediate between the more peripheral compart-

ment B and themore internal compartment A (Figures 3H and 3I).

We confirmed this observation in primary tissues by quantifying

fluorescence FISH signals in normal colon epithelial cell nuclei

(Figures 3J and S5N).

Thus, a convergence of Hi-C, methylation, polymer modeling,

and imaging data support the existence of a third genomic

compartment I that interacts with both conventional compart-

ments and adopts an intermediate spatial position in the nucleus.

In tumors, compartment I becomes broadly hypomethylated and

shifts its interactions toward the B compartment.

Distinct Chromatin and Transcriptional States Support
the Three-Compartment Model
To investigate whether compartment I is associated with distinct

histone modifications, we mapped markers of active regulatory

elements (H3K27ac), elongating transcripts (histone H3 lysine

36 trimethylation/H3K36me3), constitutive heterochromatin (his-

tone H3 lysine 9 trimethylation/H3K9me3), and facultative (his-

tone H3 lysine 27 trimethylation/H3K27me3) heterochromatin.

As expected, H3K27ac and H3K36me3 were enriched in
(G) Whole-nucleus maximum entropy model (100-kb resolution) for normal colon

(H) Representative DNA FISH image (left) and high-magnification image (right) for H

blue), and B (yellow) regions on chromosome 12.

(I) Barplot indicating the percentage of cells for which the maximum DNA FISH sig

for 305 HCT116 cell nuclei.

(J) Representative image of nuclei from normal colon epithelial cells. The image

chromosome 12. Two chromosome territories are magnified in the insets.
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compartment A (Figures 4A, 4C, and 4D), whereas H3K9me3

was enriched in compartment B and relatively increased in tu-

mors (Figures 4B–4E).

Compartment I was clearly distinguished from both conven-

tional compartments by broad H3K27me3 enrichment (Figures

4A, 4C–4E, and S6A). H3K27me3 signal intensity was particularly

pronounced in tumors and correlated with the degree of DNA hy-

pomethylation. H3K36me3, which antagonizes H3K27me3 and

has been proposed to protect against DNA hypomethylation, is

depleted in compartment I (Figure 4D; Yuan et al., 2011; Zhou

et al., 2018). Compartment I was also notable for relatively low

transcriptional levels in normal colon and moderate gene den-

sity, both of which were in between compartments A and B (Fig-

ures 4D and S6B).

Thus, in addition to its topological features, compartment I is

distinguished by its facultative heterochromatin state, modest

transcriptional output, and methylation changes in tumors.

Compartmental Changes Linked to DNA
Hypomethylation and Accumulated Cell Divisions
Compartments B and I largely correspond to hypomethylated

blocks in tumors. Moreover, we observed a striking correlation

between the extent of hypomethylation of a given region and

its eigenvector: genomic loci with more extreme hypomethyla-

tion became relatively more B-like or compact (Figure 5A).

To further assess this relationship between compartmental

changes and DNA hypomethylation, we treated HCT116 cells

with the demethylating agent 50-azacytidine (5-aza) for 24 h

and measured methylation and topology changes by Hi-C. The

treatment reduced methylation of large genomic intervals, with

56% of 100-kb windows losing more than 20% methylation

(Figure S6C). Notably, we found that genomic regions with the

most significant methylation loss shifted their interactions to-

ward compartment B in a topological reorganization reminiscent

of tumors (Figure 5B). This suggested that block hypomethyla-

tion may underlie the altered compartment structure in colon

tumors.

Block hypomethylation was originally described in cancer

cells (Berman et al., 2011; Hansen et al., 2011; Nordor et al.,

2017) but has since been recognized to be a feature of cells

that have accumulated many divisions, including aging and sen-

escing cells (Cruickshanks et al., 2013; Zhou et al., 2018).

Genome topology and nuclear structure are also altered in fibro-

blasts passaged to replicative senescence (Criscione et al.,

2016; Sati et al., 2020). We hypothesized that the compartmental

shifts in tumor cells might relate to those in passaged fibroblasts,

in both cases reflecting excessive replications. To test this, we

passaged WI-38 fibroblasts over a 14-week course and gener-

ated DNA methylation profiles and Hi-C data for cells harvested

at passages 16, 30, and 40 (STAR Methods). Late-passage cells
, showing compartments A, I, and B.

CT116 cell nuclei. Signal intensities are shown for compartment A (blue), I (light

nal intensity for compartment A, B, or I is located at the indicated radial position

shows DNA FISH signal intensities of probes for compartments A, B, and I of
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Figure 4. Distinct Chromatin States Support a Three-Compartment Model

(A–C) Plots show 3-compartment model assignments for representative regions on chromosome 20 (A), chromosome 6 (B), and chromosome 4 (C). Dark blue,

compartment A; light blue, compartment I; yellow, compartment B. DNAmethylation levels of low-density (open-sea) CpGs for three normal samples (green) and

three tumor samples (purple) are shown below, along with ChIP-seq profiles for H3K27ac, H3K27me3, and H3K9me3 for a representative normal colon sample

(green) and tumor (purple). Hypomethylated blocks are shaded in gray.

(D) Heatmap showing relative levels of H3K27ac, H3K36me3, H3K27me3, and H3K9me3 in normal colon (rows) for compartments A, I, and B (columns). DNA

methylation differences between normal colon and tumors (for open-sea CpGs) and relative gene expression in normal colon (TCGA) are also shown.

(E) Plots showing mean and standard deviation of fold change (log2) in enrichment of the indicated modification between tumors and normal samples. The

respective plots show data for different modifications and are stratified by compartment (x axes).
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continued to replicate and had not yet progressed to replicative

senescence. Comparison of early and late passage data

confirmed progressive hypomethylation of compartments B

and I with passage (Figures 5C and 5D). Moreover, late-passage

hypomethylation was accompanied by topological changes

analogous to tumors: the most hypomethylated regions had

reduced eigenvector values, suggestive of compaction (Fig-

ure 5E). Importantly, intermediate-passage fibroblasts exhibited

intermediate degrees of hypomethylation and structural reorga-

nization (Figures 5C and 5F).

The indication that compartmental hypomethylation and to-

pological shifts arise gradually as cells accumulate divisions

prompted us to examine methylation in colonic adenomas.

These pre-malignant lesions are entirely submitted for diag-

nostic evaluation, precluding assessment of topology, but

their DNA methylation can be profiled from paraffin sections.

Assessment of a published cohort of adenomas confirmed

that compartmental hypomethylation was evident in these

pre-malignant lesions and more severe in higher-grade cases
(Figure S6D; Fan et al., 2020). Taken together, these results

suggest that compartmental shifts in colorectal tumors closely

relate to DNA hypomethylation and may arise gradually over

the course of proliferation. Thus, the most profound topolog-

ical changes in tumors likely reflect their accumulated cell di-

visions rather than specific oncogenic programs.

Transcriptional Consequences of Compartmental
Reorganization
We next considered the transcriptional consequences of

compartment B/I reorganization. We were struck that the

overall transcriptional activity in these compartments was

actually reduced in tumors, despite loss of DNA methylation

and relocation of compartment B from the nuclear periphery.

Considering genes in compartments B and I with detectable

expression (transcripts per million/TPM > 0.1), we found that

3-fold more were downregulated than upregulated (Figures

S6E and S6F). In contrast, compartment A genes did not

exhibit such an imbalance.
Cell 182, 1474–1489, September 17, 2020 1481
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Figure 5. Compartmental Reorganization Is

Closely Associated with DNA Hypomethyla-

tion and Accumulated Divisions

(A) Association between Hi-C eigenvector (PC1)

and hypomethylation of 100-kb windows in tumor

samples. Data are stratified by compartment and

extent of hypomethylation. Points and horizontal

bars represent point estimates and 95%confidence

intervals from a linear regression model.

(B) Data visualized as in (A), showing the association

between Hi-C eigenvector and hypomethylation for

HCT116 cells treated with 50-aza versus DMSO.

(C) Plot showing DNA methylation for WI-38 cells at

passages 16 (black), 30 (dark gray), and 40 (light

gray). Data are stratified by compartment. Bars

represent the average of two replicates (dots).

(D) Plot showing DNA methylation (for open-sea

CpGs) for a representative region on chromosome

10. Traces represent methylation values for WI-38

fibroblasts at passages 16 (black, n = 2), 30 (dark

gray, n = 2), and 40 (light gray, n = 2). Compartment

assignments forWI-38 are shown at the top (A, blue;

I, light blue; B, yellow).

(E) Data visualized as in (A), showing the association

between Hi-C eigenvector and hypomethylation for

late (passage 40 [P40]) versus early (P16) WI-38

cells.

(F) Plot showing change over time in Hi-C eigen-

vector for 100-kb windows that show more than

20% hypomethylation in late-passage (P40) versus

early-passage (P16) WI-38 fibroblasts.
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We reasoned that gene silencing in the reorganized compart-

mentsmight be sustained (or enhanced) by their repressive chro-

matin states. Indeed, compartment I gained widespread

H3K27me3 in tumors (Figure 4E), and analysis of published

data showed that many compartment I genes were upregulated

in colon cancer-initiating cells treated with the Ezh2 inhibitor

(Figure S6G; Lima-Fernandes et al., 2019). Compartment B is

broadly covered by the repressive H3K9me3 mark, and a subset

of its promoters is silenced by focal hypermethylation within the

hypomethylated blocks (Figures 4D and S6H). Thus, alternate

epigenetic mechanisms may actually further repress compart-

ments B and I upon reorganization.

We therefore sought to identify specific genes that were de-

regulated by this process. Because reorganization correlated

quantitatively with hypomethylation (Figure 5A), we reasoned

that methylation could be a surrogate for compartmental

changes. We collated methylation and RNA-seq data for 239

colorectal tumors (TCGA) and used a correlation metric to iden-

tify genes in compartments B and I whose expression was

consistently altered in association with block hypomethylation

(Figures 6A, 6B, and S7A; STAR Methods). Notably, genes in

compartment A showed no consistent transcriptional change

in association with hypomethylation (Figure 6C).

Correlation analysis highlighted two gene sets (Figures 6A and

6B). A small set of genes was upregulated with block hypome-

thylation and included cancer germline antigens (CGAs) and

endogenous retroviruses (ERVs). De-repression of CGAs and

ERVs has been described in colon tumors and linked to viral
1482 Cell 182, 1474–1489, September 17, 2020
mimicry and immunogenicity (Gibbs andWhitehurst, 2018; Roo-

ney et al., 2015; Roulois et al., 2015).

A much larger set of genes in compartments B and I were

downregulated with block hypomethylation (Figures 6A and

6B). Downregulated genes in compartment B were marked by

H3K9me3 and/or promoter methylation in tumors, whereas

those in compartment I were enriched for H3K27me3 (Fig-

ure S7B). We curated a list of robustly downregulated genes in

these compartments (Table S5). To focus on malignant cell-

intrinsic expression, we controlled for stromal content and

excluded genes with high expression in immune cells or other

non-epithelial cell types (STAR Methods). Remarkably, the re-

sulting list of 146 genes was highly enriched for functions related

to mesenchymal development, stem cell proliferation, and Wnt

signaling (Figure 6D). Further analysis highlighted specific genes

with established roles in colorectal cancer progression, Wnt

signaling, epithelial-mesenchymal transition (EMT), invasion,

and metastasis (e.g., CCBE1, EPHA4, FGFR1, FGFR2, FZD2,

GPR137B,MEIS2,NFIB,PRRX1,PYGO1,SPP1, and TIAM1; Ta-

ble S6; Koveitypour et al., 2019; Nguyen et al., 2020). In contrast,

only a few of the downregulated genes were nominally associ-

ated with tumor-suppressive functions.

Our analyses suggest that compartmental reorganization

drives induction of CGAs and ERVs, which are associated with

anti-tumor immunity, and repression of genes with functions in

Wnt signaling, EMT, invasion, and metastasis. Hence, the most

profound topological alterations evident in tumors are actually

associated with tumor-suppressive transcriptional programs.
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Figure 6. Compartmental Reorganization Linked to Tumor-Suppressive Transcriptional Programs

(A) Volcano plot depicting the association (x axis) between expression and block hypomethylation for genes in compartment B, computed across tumors in the

TCGA colorectal cohort with a purity of more than 40%. The y axis indicates the significance of the association. Genes (points) plotted toward the top right are

upregulated in association with block hypomethylation. They are highly enriched for cancer germline antigens (CGAs; red) and ERV elements (green). Genes

plotted toward the top left are downregulated in association with hypomethylation. A magnified panel (below) highlights high-confidence downregulated genes

after excluding genes expressed in non-epithelial cell types (black; STAR Methods). Genes related to EMT, Wnt signaling, invasion, and metastasis are labeled.

(B) Data presented as in (A) for compartment I genes.

(C) Boxplot showing association between expression change and DNA block hypomethylation for genes in compartments A, B, and I. Negative values indicate

repression in association with DNA hypomethylation, and positive values indicate upregulation in association with hypomethylation.

(D) Functional gene set annotations enriched (false discovery rate [FDR] < 20%) among 146 high-confidence downregulated B/I genes (from the insets in A and B). *,

enriched annotations included multiple overlapping sets related to embryonic development (Table S6).

(E) Plot showing average block methylation levels for normal colon biopsies (y axis) as a function of donor age (x axis). Each point represents one sample from a

low-risk (green) or high-risk (magenta) donor (Wang et al., 2020). Linear regression fit (lines) and 95% confidence intervals (shades) are indicated.

(legend continued on next page)
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Compartment-Specific Epigenetic Changes Restrain
Tumor Progression
Our collective findings suggested that accumulation of excess

cell divisions leads to compartmental shifts that enact tumor-

suppressive transcriptional programs. They led us to hypothe-

size that compartmental reorganization hinders malignant pro-

gression. To test this, we examined whether the compartmental

shifts were predictive of disease risk and outcome.

First, we considered a recent survey of DNAmethylation in 206

normal colon biopsies, stratified into low- and high-risk groups

according to whether the donor had a concurrent colorectal tu-

mor elsewhere in the colon (Wang et al., 2020). Examination of

these data confirmed that compartments B and I became pro-

gressively hypomethylated with increasing donor age (Fig-

ure S7C). To test whether hypomethylation was protective, we

compared low- and high-risk groups. We found that compart-

ments B and I were significantly less hypomethylated in normal

colon biopsies from the high-risk group, consistent with our hy-

pothesis that the compartment shift is tumor suppressive

(Figure 6E).

Second, we examined two clinical cohorts of colorectal tu-

mors (Marisa et al., 2013; The Cancer Genome Atlas Network,

2012). Although these tumors have presumably overcome im-

pediments posed by compartment shifts, we reasoned that the

associated transcriptional changes should nonetheless hinder

their progression and correlate with favorable patient outcomes.

Here we focused on the 146 genes in compartments B and I that

were robustly downregulated with block hypomethylation (Table

S5). As expected, these genes were expressed at substantially

lower levels in tumors (Figure 6F). However, there was consider-

able tumor-to-tumor variability. Remarkably, we found that this

set of genes was highly enriched for poor prognosis markers in

a cohort of 566 colon tumors (Figure S7D; p = 2.43 10�10; Mar-

isa et al., 2013). A risk score constructed from their average

expression was a strong predictor of shorter recurrence-free

survival (RFS) (Figure 6G; p = 0.0007). This prognostic associa-

tion was also validated in a second cohort of 443 tumors from

TCGA (p = 0.03).

Survival difference was evident even after controlling for mi-

crosatellite instability (MSI), BRAF mutations, and clinical stage

(p = 0.025) (Figure S7E). It was evident even in node-negative

stage II tumors (p = 0.039), which is significant, given the clinical

challenge associated with the uncertain course of these interme-

diate-stage tumors (Figure S7F) (Fotheringham et al., 2019). The

gene set was also associated with metastases (p = 0.018),

consistent with its functional annotations and supportive of its

clinical significance.

Finally, we considered whether compartmental reorganization

could be a general tumor-suppressive mechanism. We exam-

ined methylation and expression data for cohorts spanning 10

epithelial tumor types (ICGC/TCGA Pan-Cancer Analysis of

Whole Genomes Consortium, 2020). We confirmed that block
(F) Plots showing average expression of the high-confidence downregulated B/I g

to a different sample from a cohort of colorectal tumors and normal colons (Cance

(G) Kaplan-Meier curve depicting survival outcomes of patients stratified by their a

B/I genes.
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hypomethylation correlated with reduced gene expression in

all 10 cancers (Figure S7G). We next collated genes in blocks

that were significantly downregulated in association with hypo-

methylation in each cohort. The resulting sets were highly over-

lapping and include a shared set of 367 genes that were

commonly downregulated with hypomethylation in at least 7 of

the 10 tumor types (Table S7). Remarkably, these shared genes

were enriched for annotated oncogenes (p = 0.002), suggesting

that compartmental reorganization may also hinder the develop-

ment and progression of other epithelial tumor types.

In conclusion, we document profound compartmental shifts in

tumors and other cells that have accumulated many divisions

(Figures 7A and 7B). This reorganization is associated with wide-

spread transcriptional changes, including repression of EMT, in-

vasion, metastasis, and stemness programs. Further analysis of

methylation and expression data for normal colon biopsies and

tumor cohorts supports the hypothesis that the compartmental

shifts and associated transcriptional programs restrain tumor

progression.

DISCUSSION

We presented a systematic integration of genome topology,

methylation, and chromatin state in colorectal cancer. Our data

and analyses parse multiple organizational layers, from E-P

loops to TADs to compartment structures. In particular, they

revealed three principles of large-scale compartmental organi-

zation. First, topology data for primary tissues uncovered a

structurally distinct intermediate compartment I. Second, com-

parison of tumors and normal colon revealed widespread

changes in spatial partitioning, nuclear positioning, and epige-

netic states of compartments B and I that appear to be shared

by tumor, aging, and other excessively replicated cells. Third,

these compartmental changes correlate with and may promote

tumor-suppressive expression programs associated with

reduced cancer risk and better prognosis. Although tumor-asso-

ciated epigenetic changes are typically construed to be onco-

genic, our findings suggest that thesemost profound topological

alterations actually restrain malignant progression.

Evidence of compartment I emerged from our analysis of

primary epithelial tissue. Compartment I resides at the interface

between the A and B compartments and engages in promiscu-

ous long-range interactions with both conventional compart-

ments. Polymer models and FISH imaging data indicate that

compartment I regions occupy intermediate radial positions in

nuclei. Compartment I is also distinguished epigenetically by

broad H3K27me3 and robust block hypomethylation in tumors.

Compartment I is distinct from previously described sub-com-

partments, showing the highest overlap (47%) with B1 (Rao

et al., 2014). It may relate to nuclear foci documented in high-res-

olution imaging studies (Boettiger et al., 2016; Rowley and Cor-

ces, 2018; Xu et al., 2018). For example, Boettiger et al. (2016)
enes (from the insets in A and B) in clinical specimens. Each point corresponds

r Genome Atlas Network, 2012). The y axis represents log2-normalized counts.

verage tumor expression of the high-confidence downregulated compartment
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Figure 7. Compartment Shifts in Excessively Replicated Cells Restrain Malignant Progression

The schematic depicts compartment shifts and proposed functional consequences.

(A) In normal nuclei, compartments A, B, and I are robustly partitioned and spatially segregated. In tumor or aging cells that have accumulated excess divisions,

compartmental organization is compromised, and compartment-specific epigenetic states are altered.

(B) Exemplar loci are shown for each compartment in normal (top) or pathologic (bottom) states. Hypomethylation of compartment B induces ERVs and CGAs,

which promote anti-tumor immunity. Repressive chromatin in compartments B and I downregulates genes associated with EMT, invasion, and stemness.
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visualized a compartment enriched for Polycomb-associated

marks and developmental genes in Drosophila.

The coherent organization of compartments A, B, and I in

normal colon was profoundly distorted in tumors. We observed

a breakdown of partitioning between compartments A and B,

whereas compartment I shifted its interactions toward the

closed B compartment. The aberrations appear to be closely

related to nuclear architecture. Concordant polymer models,

electron microscopy, and FISH imaging data indicate that

compartment B loses its tight association with the periphery

and shifts toward the nuclear interior. Falk et al. (2019) found

previously that the radial asymmetry of compartments A and

B is inverted in rod photoreceptors. However, compartmental

partitioning was largely maintained in photoreceptors, in

contrast to the overall disorganization of compartmental struc-

ture in tumors.

The breakdown of compartment structure was closely tied to

pervasive changes to methylation and chromatin state. Com-

partments B and I acquired near-uniform hypomethylation in tu-

mors and became further enriched for their characteristic chro-

matin states, H3K9me3 and H3K27me3, a pattern that has

also been described for hypomethylated loci in breast cancer

cell lines (Hon et al., 2012). The reorganized compartmentsmight

relate to phase-separated condensates and nuclear foci thought

to play wide-ranging roles in gene and genome regulation (Lar-

son et al., 2017; Strom et al., 2017). Notably, high-resolution an-

alyses have identified senescence-associated heterochromatin

foci with a central density of H3K9me3-marked heterochromatin

surrounded by a ring of H3K27me3 (Chandra and Narita, 2013;

Sati et al., 2020), features consistent with our three-compart-

ment model in tumors.

Compartmental reorganization appears to be tightly linked to

DNA hypomethylation and proliferative history. Hypomethylated

blocks in tumors correspond to compartments B and I, with the
most severely hypomethylated loci undergoing more negative

eigenvector shifts, indicative of compaction. Methylation loss

may be causal because demethylating agents directly induce to-

pological changes. Although block hypomethylation was initially

described in cancer, it is increasingly recognized to be a com-

mon feature of cells that have accumulated excess divisions,

including aging and senescing cells (Berman et al., 2011; Cruick-

shanks et al., 2013; Nordor et al., 2017; Timp et al., 2014).

Indeed, compartments B and I become progressively hypome-

thylated and structurally reorganized in passaged fibroblasts.

Moreover, colon adenomas exhibit intermediate compartmental

hypomethylation, consistent with a replicative history between

normal colon and tumors. Although future studies are needed

to examine the topology of these and other pre-malignant le-

sions, our findings suggest that compartmental shifts are not a

consequence of malignancy but, rather, arise progressively as

cells accumulate divisions.

We therefore propose that the compartmental reorganization

reflects a fundamental epigenetic process primed by excess

cell divisions, a perspective that enabled us to interpret atten-

dant transcriptional changes. Compartmental hypomethylation

was associated with repression of compartment B and I genes,

likely as a consequence of repressive epigenetic states that arise

in the hypomethylated compartments. Repressed genes were

enriched for oncogenic functions related to EMT, invasion, and

Wnt signaling, leading us to speculate that the topological shifts

present a barrier to tumorigenesis. Indeed, prior studies have

shown that cultured cells undergoing EMT remodel large hetero-

chromatin domains (McDonald et al., 2011). Although most

compartment B and I genes were downregulated, CGAs and

ERVs with pro-immunity functions were induced and could com-

plement restriction of stemness and invasion programs to

restrain malignant progression in aging colonic epithelium or

pre-malignant lesions.
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Final support for a proposed tumor-suppressive role emerged

from our analysis of clinical cohorts. First, methylation profiles for

normal colon biopsies revealed that age-associated compart-

ment B and I hypomethylation was associated with reduced

colorectal cancer risk (Wang et al., 2020), consistent with our

model and with a recent report relating morphological changes

in uninvolved colonic nuclei to tumor risk (Gladstein et al.,

2018). Second, examination of colorectal tumor cohorts re-

vealed that a transcriptional signature of compartmental shift

was predictive of patient outcome and likelihood of metastasis.

Finally, a pan-cancer analysis suggested that the compartmental

shifts and tumor-suppressive effects may be generalizable to

other epithelial cancers. Future studies of these pervasive archi-

tectural changes and their functional significance in cancer and

aging could inform new strategies for early detection, patient

stratification, and therapeutic intervention.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CTCF Cell signaling Cat# 3418; RRID: AB_2086791

SMC1 Bethyl Cat# A300-055A; RRID AB_2192467

H3K27ac Active Motif Cat# 39133; RRID AB_2561016

H3K9me3 Abcam Cat# 8898; RRID AB_306848

H3K27me3 Cell Signaling Cat# 9733; RRID AB_2616029

H3K36me3 Abcam Cat# 9050; RRID AB_306966

Biological Samples

See Table S1 for a list of patient samples

included in the study.

N/A

Chemicals, Peptides, and Recombinant Proteins

Azacitidine (5-azacitidine) Selleckchem S1782

Triethanolamine Sigma 90279

Acetic Anhydride Sigma 320102

Formamide Sigma 47671

CX1723 Supelco Citric Acid, Anhydrous Sigma CX1723

Thermo ScientificRNase A, DNase and

protease-free (10 mg/mL)

ThermoScientific EN0531

Dextran sulfate sodium salt from

Leuconostoc spp.

Sigma D8906

Invitrogen DAPI (4’,6-Diamidino-2-Phenylindole,

Dihydrochloride)

ThermoFisher D1306

SlowFade Gold Antifade Mountant Invitrogen S36936

Tissue-Tek* O.C.T. Compound VWR/Sakura 25608-930

Oligo Pool, 160mers Twist Biosciences

Taq polymerase Thermo Fisher 18038042

Maxima H Minus Reverse Transcriptase (200 U/mL) Thermo Fisher EP0751

Critical Commercial Assays

Nextera DNA Library Prep Kit (for HiChIP) Illumina 20018704

NEXTFLEX bisulfite library prep kit Perkin Elmer NOVA-5119-01

HiScribe T7 High Yield RNA Synthesis Kit NEB E2040S

Kapa HiFi Hotstart PCR Kit Roche #KK2502

Deposited Data

Imaging data This paper Mendeley data: https://dx.doi.org/10.17632/6k4hjfw76.1

Raw and processed sequencing data This paper GEO: GSE133928

Experimental Models: Cell Lines

HCT116 ATCC CCL-247

SW480 ATCC CCL-228

LS 174T ATCC CL-188

RKO ATCC CRL-2577

FHC ATCC CRL-1831

WI38 Coriell AG06814-N

Oligonucleotides

Chr 12 Probe F- for DNA FISH probe preparation IDT CGGTCCCGTCCGAGGTATAC

Chr 12 Probe R- for DNA FISH probe preparation IDT TCCAATACGCACCGATCGAG

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

chr12_A_all (Secondary 1 Binding Site) F IDT CACCGACGTCGCATAGAACGGAAGAGCGTGTG

GACAGCCGGTTCGGTCGTTC

chr12_A_all (Secondary 1 Binding Site) R IDT TAATACGACTCACTATAGGGCGGTCCCGTCCG

AGGTATAC

chr12_B_all (Secondary 5 Binding Site) F IDT TAGCGCAGGAGGTCCACGACGTGCAAGGGTG

TTCGTTCACCGCGCGTTGAAG

chr12_B_all (Secondary 5 Binding Site) R IDT TAATACGACTCACTATAGGGCGGTCCCGTCCG

AGGTATAC

chr12_I_all (Secondary 6 Binding Site) F IDT CACACGCTCTCCGTCTTGGCCGTGGTCGATCA

GCGATCTGCGCATGGTAATC

chr12_I_all (Secondary 6 Binding Site) R IDT TAATACGACTCACTATAGGGCGGTCCCGTCCG

AGGTATAC

Secondary 1- Alexa488 IDT ACACACGCTCTTCCGTTCTATGCGACGTCGGTGA

Secondary 1- Alexa647 IDT ACACACGCTCTTCCGTTCTATGCGACGTCGGTGA

Secondary 5- Atto565 IDT ACACCCTTGCACGTCGTGGACCTCCTGCGCTA

Secondary 6- Alexa647 IDT TGATCGACCACGGCCAAGACGGAGAGCGTGTG

Software and Algorithms

Juicebox Durand et al., 2016 http://aidenlab.org/juicebox/

Cell Profiler McQuin et al., 2018 version 3.1.9

FIJI Schindelin et al., 2012 version 2.0.0-rc-69/1.52p

HiC-Pro Servant et al., 2015 version 2.10.0

Bioconductor Huber et al., 2015 release 3.11

Code supporting this study This paper https://github.com/aryeelab/colon-dna-topology

OligoMiner scripts Beliveau et al., 2012 https://github.com/beliveau-lab/OligoMiner
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to the Lead Contact, Bradley Bernstein (Bernstein.

Bradley@mgh.harvard.edu).

Materials Availability
No unique reagents were generated for this study.

Data and Code Availability
All next generation sequencing data generated in the study were deposited at dbGaP and the Gene Expression Omnibus (GEO):

GSE133928. Original data including all raw microscopy images were deposited at Mendeley Data: https://dx.doi.org/10.17632/

6k4hjkfw76.1. Code supporting the study is deposited at Github: https://github.com/aryeelab/colon-dna-topology/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tumor specimens
Tumors included in this cohort are either collected as part of a Massachusetts General Hospital (MGH) Pathology discarded tissue

tumor banking protocol or on a consented protocol. All samples were acquired with Institutional Review Board approval

(2012P001475/PHS). For the discarded tissue cohort, the tissue was collected from colonic adenocarcinomas at the time of surgical

resection at MGH prior to 2015 and saved as part of a de-identified tissue bank. As a de-identified cohort, no clinical data is available.

A second set of tumors came from patients at the MGH who were consented preoperatively to take part in the study. For a subset of

these patients, normal colon was taken from adjacent normal areas in resection specimens from consented patients. Both normal

and tumor tissue from the consented cohort was snap frozen. A summary of the tissue (normal and tumor) samples is provided in

Table S1. Tumor genotyping was based on the SNaPshot assay, performed at Massachusetts General Hospital (Dias-Santagata

et al., 2010). Our clinical cohort included 26 tumors, and 7 normal colon tissue samples (Table S1).
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Cell lines
Our in vitromodels included colon cancer cell lines (HCT116, SW480, RKO, LS-174T), a line derived from normal fetal colonic epithe-

lium (FHC) and a primary fibroblast line (WI-38). Colon cell lines were purchased from ATCC: HCT116 (CCL-247), SW480 (CCL-228),

LS174-T(CL-188), RKO (CRL-2577) and FHC (CRL-1831). The primary fibroblast line WI38 was obtained from Coriell (AG06814-N).

HCT116 and SW480 were grown in McCoy’s 5A medium (GIBCO 16600082), 10% FBS and 0.5% pen-strep (GIBCO 10378016).

LS174T and RKO were grown in EMEM (ATCC 30-2003), 10% FBS and pen-strep (GIBCO 10378016). FHC was cultured as per

ATCC in DMEM/F12 media (ATCC 30-2006), 25mM HEPES, 10 ng/ml cholera toxin, 0.005 mg/ml insulin, 0.005 mg/ml transferrin,

100 ng/ml hydrocortisone, 20 ng/ml recombinant EGF (Thermo Fisher PHG0311) and 10% FBS. WI38 was cultivated in EMEM

with 15% FBS and passaged serially (approximately twice weekly) for 14 weeks.

METHOD DETAILS

Tissue dissociation and crosslinking
Tumor and normal colon samples were diced on dry ice into small (< 1mm) pieces and resuspended in ice cold PBS (GIBCO 10010-

023). When crosslinking, formaldehyde was added to 1% and tissue was rotated at room temperature (RT) for 15 minutes. Glycine

(2.5 M) was added to quench the formaldehyde and samples were rotated for an additional 5 minutes at RT. For cell lines, cells were

pelleted, crosslinked in 1% formaldehyde for 10 minutes at 37 degrees and quenched with 2.5M glycine. All crosslinked samples

were washed in ice cold PBS with protease inhibitors, pelleted and flash frozen in liquid nitrogen.

Hybrid selection bisulfite sequencing
Total genomic DNA was isolated using the DNAeasy Blood & Tissue Kit (QIAGEN) and sheared using the Covaris LE220. Ampure XP

beads (Agencourt) were then used to size select gDNA fragments within 150-320bp, and sheared distribution was verified via Bio-

Analyzer (Agilient) prior to continuation. Sheared genomic DNA (1 ug) was then generated into a sequencing library via end repair, 30 A
base tailing (KAPA Hyper Prep Kit #KK8502) and sequencing adaptor ligation (Roche SeqCap Epi Enrichment System). Post-ligation

clean-up was performed using Ampure XP beads. Following bead clean-up, DNA library was then bisulfite converted using the EZ

DNA Methylation-Lightning Kit (Zymo Research) and amplified via PCR using KAPA HiFi U+ HotStart ReadyMix (KAPA #KK2800).

Equal concentration of each bisulfite-converted library was then combined in sets of either three or four libraries/per pool along

with SeqCap Epi universal & indexing oligos and bisulfite capture enhancer (SeqCap Epi Accessory Kit). Each pool was subsequently

lyophilized using TOMYMicro-Vac (MV100) and resuspended in hybridization buffer (SeqCap Epi Hybridization andWash Kit) prior to

being hybridized to SeqCap Epi Probe Pool (Roche) for 72 hours at 47C in a thermocycler with a heated lid at 57C. Following the 72-

hour incubation, captured bisulfite-converted libraries were recovered (SeqCap Pure Capture Bead Kit) at 47C in a thermocycler for

45 minutes, with intermediate vortexing every 15 minutes. Capture beads were then washed (SeqCap Hybridization andWash Kit) in

a 47C water bath at room temperature, respectively. Captured bisulfite-converted libraries were amplified via PCR (SeqCap Epi

Accessory Kit). Libraries were sequencedwith 10%PhiX spike-in as 100-base paired end reads on the HiSeq2500 in rapid runmode.

Whole genome bisulfite library preparation
Total genomic DNA was isolated using the DNAeasy Blood & Tissue Kit (QIAGEN) and for each sample, one microgram of DNA was

sheared using the Covaris LE220. Libraries were prepared according to manufacturer’s instructions using the NEXTFLEX bisulfite

library prep kit (NOVA-5119-01). Libraries were sequenced on the Illumina NextSeq500 instrument.

ChIP-seq
We generated chromatin state maps (H3K27ac, H3K36me3, H3K9me3 and H3K27me3) and binding profiles for the CTCF insulator

protein by ChIP-seq. ChIP-seq was performed as described previously (Liau et al., 2017). In brief, crosslinked cells were lysed and

DNAwas sheared to between 400 and 2,000 base pair fragments. Antibodies were as follows: CTCF (Cell signaling #3418), H3K27ac

(Active Motif #39133), H3K9me3 (Abcam #8898), H3K27me3 (Cell Signaling #97335) and H3K36me3 (Abcam #9050). ChIP DNA was

used to generate sequencing libraries by end repair (End-It DNA repair kit, Epicenter), 30 A base overhang addition via Klenow frag-

ment (NEB), and ligation of barcoded sequencing adapters. Barcoded fragments were amplified via PCR. Libraries were sequenced

as 38-base paired-end reads on an Illumina NextSeq500 instrument.

Hi-C
Hi-C maps of chromosome topology were initially generated for a cohort of 7 primary tumors, 4 normal colon tissue samples and 5

cell lines (cohort 1; Table S1). We then confirmed our results by acquiring Hi-C data for a validation cohort of 5 tumors and 3 normal

colon samples (cohort 2; Table S1).

In situHi-Cwas performed as described previously (Rao et al., 2014). In brief, crosslinked cells or tumor were thawed on ice in Hi-C

lysis buffer. Tissue samples were mechanically disrupted with the Biomasher tissue grinder (Kimble Chase). Tissue and cell line

samples were permeabilized in 0.5% SDS at 37 degrees, quenched with Triton X-100 and chromatin was digested with 100-

200U MboI at 37 degrees overnight. Nuclei were then pelleted, ends were marked with biotin-14-dATP (ThermoFisher 19524016)

and chromatin was ligated for 5 hours by T4DNA ligase (M0202). Sampleswere treatedwith proteinaseK at 55 degrees for 30minutes
e3 Cell 182, 1474–1489.e1–e11, September 17, 2020



ll
Article
and cross-links were reversed at 68 degrees overnight. DNA was ethanol precipitated and sheared on a Covaris LE220. DNA was

cleaned up via AMPure XP beads (Beckman Coulter, A63881) and quantified by Qubit dsDNA High Sensitivity Assay (Life Technol-

ogies, Q32854). Samples were bound to Dynabeads MyOne Streptavidin T1 beads (Life technologies, 65602) and washed. End

repair, dATP attachment and adaptor ligation was performed. Final PCR amplification was performed using barcoded sequencing

primers and PCR. Libraries were purified using AMPure XP beads and sequenced on either a NextSeq500 (150 cycle kit), HiSeq2500

(high output; 200 cycle kit) or NovaSeq S4 (200 cycles).

HiChIP
We acquired SMC1 HiChIP data for cohort 1 (Table S1). HiChIP was performed as described previously (Mumbach et al., 2016).

Briefly, crosslinked samples were lysed in Hi-C lysis buffer and chromatin was permeabilized in 0.5% SDS at 63C for 10 minutes.

Chromatin was digested with MboI for 2 hours at 37C. Overhangs were filled in and marked with Biotin-dATP (ThermoFisher

19524016), and ends were ligated with T4 DNA Ligase (NEBM0202) for 4 hours at room temperature. Nuclei were pelleted and lysed

and chromatin was sheared on the Covaris E220 with the following conditions: Fill level 5, Duty Cycle 5, PIP 140, Cycles/burst 200,

Time 4 minutes. Samples were clarified, diluted in ChIP dilution buffer and precleared with Protein G beads (Invitrogen 11205D) for 1

hour at 4C. Samples were cleared on magnet and supernatant was added to antibody. Chromatin was ChIP’d overnight at 4C with

rotation. Protein G beads were added and incubated for 2 hours at 4C with rotation. Beads were washed with low salt, high salt and

LiCl buffer. Sample was eluted in ChIP elution buffer, treated with Proteinase K and crosslinks were reversed. DNAwas purified using

the Zymo clean & concentrate kit (DCC-100). Streptavidin M280 beads (Invitrogen 11205D) were washed and resuspended in 2x

biotin binding buffer and DNAwas bound for 15minutes at room temperature. Beads were washe and Tn5 fragmentation was carried

out as per Mumbach et al.,2016, with dilutions of Tn5 to process low input samples. Libraries were amplified using the Nextera DNA

Library Prep kit (Illumina). Material was cleaned up using Ampure XP beads. Libraries were sequenced on NextSeq500 (150 cycle kit)

or the HiSeq2500 (high output; 200 cycle kit).

RNA-seq
Whole RNA was extracted using the QIAGEN RNeasy kit according to the manufacturer’s protocol. For RNA-seq library preparation,

Poly(A)+ RNA was enriched using magnetic oligo(dT)-beads (Life Technologies) and then ligated to RNA adaptors for sequencing.

RNA-seq was performed with two biological replicates per colon cancer line and in singlicate for tumor samples. Libraries were

sequenced as 38-base paired-end reads on an Illumina NextSeq500 instrument.

Electron microscopy
Fresh tissue biopsies were placed directly into EM fixative (2.5% glutaraldehyde, 2.0% paraformaldehyde, 0.025 calcium chloride in

a 0.1M sodium cacodylate buffer, pH 7.4) and allowed to fix for 3 hours at room temperature or ON at 4�C. Further processing was

done in an EMS (Electron Microscopy Sciences) Lynx ll automatic tissue processor. Briefly, tissues were post-fixed with osmium te-

troxide, dehydrated in a series of ethanol solutions, en block stained in the 70% ethanol step with uranyl acetate, further dehydrated

in 100% ethanol and propylene oxide. Tissues were infiltrated in a series of propylene oxide, Epon mixtures and embedded in pure

Epon. The Epon blockswere polymerized overnight in a 60�Coven. Onemicron sections were cut using glass knives and stainedwith

toluidine blue. Representative areas were chosen by light microscopy. Thin sections were cut using an LKB ultramicrotome and dia-

mond knife. The sections were stained with Sato’s lead stain and examined with a FEI Mogagni transmission electron microscope.

Images were captured with an AMT (Advanced Microscopy Techniques) 2K digital CCD camera.

DNA-FISH
Generation of DNA-FISH probes

Based on evidence of CNV stability in tumors with available biological material, chromosome 12 was chosen for validation experi-

ments. Only the p-arm of chromosome 12 was considered to avoid measuring arm-related differences in nuclear positioning. For

compartments A and B, consecutive regions of at least 300Kb with absolute PC1 values larger than 0.5 in normal colon were iden-

tified (see methods section of eigenvector decomposition of Hi-C matrices). For these consecutive segments, the 100Kb regions at

the middle of each segment were selected. For compartment I, a set of 100Kb regions was selected so that their linear distances to

the B candidate regions was equivalent to the distance between the A candidate regions and the B candidate regions. Furthermore,

the candidate regions were screened to have the same compartment-specific characteristics in HCT116 cells. Then, oligopaint li-

braries were designed using the Oligominer pipeline (Beliveau et al., 2012). Specifically, candidate regions were mined for probes

using the length requirement of 80 nucleotides of homology, melting temperature range of 47-80�C, and default settings for the re-

maining Oligominer parameters. Resulting oligos yielded an average probe density of 4.6 probes/kb. An oligo pool (Twist Bioscience)

was synthesized such that all probes targeting A, B, or I regions could be created in aggregate. Single-stranded probes were pro-

duced using PCR, T7 RNA synthesis, and reverse transcription as described previously (Rosin et al., 2018; Shav-Tal, 2013).

DNA-FISH on tissue

For DNA-FISH, tissue samples were fixed in 4% paraformaldehyde (FisherScientific, 15710) for 2 hours, washed in 1X PBS and

soaked for 2x 10 minutes in 0.5M NH4Cl (26.6g/L in PBS, Sigma-Aldrich, 213330). The samples were cryoprotected by overnight

incubation in 30% w/v sucrose (Sigma-Aldrich, S0389) in PBS at 4�C, nutating. The next morning, the sucrose was replaced with
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30% sucrose, 50%OCT (Tissue-Tek* O.C.T. Compound, Sakura, 25608-930) for two hours at 4�C, nutating. They were embedded in

plastic peel-awaymolds in OCT, frozen on a cold block in liquid nitrogen, and stored in the freezer until sectioning. 5 mmsectionswere

sectioned using a cryostat, collected on Superfrost Plus microscope slides (FisherSci 22-037-246) and stored at �20�C.
Slides were thawed at room temperature for 30’ and rehydrated in 10 mM sodium citrate for 50. Next, the slides were incubated for

10’ in 10 mM sodium citrate at 80�C and allowed to cool down at room temperature for�30’. They were washed twice at 2X SSC, 50

each, and transferred to 50% formamide (Sigma Aldrich, F9037) in 2X SSCT (SSC + 0.1% Tween-20) for at least 1h. Following dena-

turation, the tissue was dehydrated in an ethanol row (70%, 95%, 100%, three minutes each) and air-dried for at least 90 minutes.

They were then acetylated with acetic anhydride as follows: dried slides were equilibrated in 0.1M fresh ethanolamine (Sigma Aldrich,

90279) in dH2O, pH 8.0 for 10 minutes, then transferred to 0.25% v/v acetic anhydride (Sigma Aldrich, 320102) in 0.1M ethanolamine

for 50 followed by washing for 10’ in 2X SSCT. During the previous steps, probes against compartments A, B and I were prepared by

adding 1 uL of 100 uMdNTPs (Life Technologies, R1121) and 50 pmol probes each per slide, speed vacuuming on high for 20’ (or until

the liquid had evaporated), and resuspending the probes in 5.25 uL per sample. This probe-dNTP mix was then added to the hybrid-

ization mixture containing a final concentration of 50% formamide, 10 ug RnaseA (Thermo Scientific EN0531) and 1x Dextran Sulfate

Mix (10% Dextran Sulfate D8906, Sigma Aldrich, 2xSSC, 0.1% Tween-20). Next, the slides were mounted with probe mix, covered

with a glass coverslip and rubber cement (Staples, EPI231) and incubated on a hot block at 42�C for 1-3 hours to allow infiltration with

the probe. Then, the slides were heat-shocked to denature the section and probe at 85�C for 7 minutes and incubated overnight

(16h+) at 37�C in a temperature-controlled oven. The next day, the coverslips were removed from the sections and washed at

60�C for 15 minutes in pre-warmed 2X SSCT, at room temperature for 10’ in 2X SSCT, at room temperature for 10’ in 0.2X SSCT,

and transferred to 2X SSC while secondary mix was prepared consisting of 10% formamide, 1x Dextran Sulfate Mix and 10 pmol

of secondary probes labeled with Cy3 (B compartment), Cy5 (A or I compartment) and A488 (A compartment) in dH2O. The sections

were incubated with secondary mix in a humid chamber at room temperature in the dark for at least two hours, followed by the same

washes as before. In the last step with 2X SSC, the nuclei were counterstained with DAPI (Sigma-Aldrich, D1305, 5 mg/mL final con-

centration), briefly washed in 2X SSC and mounted using SlowFade Gold Antifade Mountant (Invitrogen, S36936).

DNA-FISH on HCT116 cells

Cells were grown on glass coverslips, fixed in 4% PFA for 15 minutes, and processed as described above with the following adjust-

ments: sodium citrate and acetic anhydride treatments were omitted; instead, the cells were permeabilized after fixation using 0.5%

Triton X-100 for 15’ followed by a 50 wash in PBS and alcohol denaturation. Prior to probe mix addition, the samples were re-equil-

ibrated using 2X SSCT + formamide (50% v/v 4x SSCT + 50% v/v formamide) for 1h at 37�C. The probes were then immediately

denatured at 80�C for 50 and incubated overnight at 37�C. The DNA-FISH stainings were imaged on a Zeiss LSM800 confocal mi-

croscope with Airyscan settings and a 63x oil objective.

Treatment with 5-azacytidine
5-azacytidine was obtained from SelleckChem (S1782) and HCT116 cells were cultured in the presence of 5 uM or 1:2000 DMSO

control. Cells were plated in media containing 5-aza or DMSO and harvested at 24 h.

QUANTIFICATION AND STATISTICAL ANALYSIS

DNA methylation data preprocessing and quantification
BSMAP version 2.74 was used both to map the sequenced reads to the reference genome (hg19) and to calculate the methylated

fraction for eachCpG across the genome (Xi and Li, 2009). Data was further analyzedwithin the framework of the bsseqBioconductor

package (Hansen et al., 2012).

In order to avoid potential biases introduced by the DNA capture enrichment step, genomic coordinates of hypomethylated blocks

were defined based on differentially methylated regions (DMRs) using previously published whole-genome bisulfite sequencing data

(Hansen et al., 2011). DMRs with methylation differences larger than 10% between tumors and normal samples were considered.

Consecutive DMRs smaller than 500Kb bins were merged if the genomic distance between the DMRs was smaller than 10% of

the width of the individual DMRs. Only merged DMRs larger than 100Kb were considered for further analysis in order to match

the resolution of the compartment calls of theHi-C data. To quantify block-level methylation in our samples, we used onlymethylation

at open-sea CpGs, i.e., those located > 2kb from CpG islands. We confirmed that hypomethylated blocks were recapitulated in our

capture bisulfite sequencing data, displaying methylation differences both between tumor samples and normal samples, and be-

tween regions inside a block and the flanking genomic regions.

For each sample, the degree of CIMP hypermethylation was assessed by measuring average methylation at CIMP-specific meth-

ylated islands (Xu et al., 2012). Samples with the highest methylation levels at these sites were labeled as CIMP. A clinical genotyping

assay (Dias-Santagata et al., 2010) revealed BRAFmutations in the two CIMP tumors, consistent with reported associations (Hinoue

et al., 2012). TCGA methylation data was used to verify that the methylation levels of our CIMP samples were comparable to the

methylation levels of CIMP tumors in TCGA. TCGA DNA methylation data was downloaded using TCGAbiolinks (Colaprico et al.,

2016). Comparison of CpG island hypermethylation and block hypomethylation across our samples and a larger cohort of colon tu-

mors from the Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Network, 2012) confirmed that CIMP and block hypomethylation

are indeed independent features.
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Cancer-associated DNA methylation alterations in normal colon tissue
We obtained pre-processed Illumina EPIC and 450k methylation array beta values data from the colon tissue samples described in

Wang et al., 2020 (NCBI GEO GSE132804 Series Matrix files). Analysis was restricted to probes common to the two platforms. We

computed a block hypomethylation score for each sample as the average DNAmethylation of open-sea CpGs (i.e., those > 2kb from

a CpG island) within hypomethylated blocks, using the same block region definitions used elsewhere in the study for tumor versus

normal comparisons. We verified that the low and high risk group samples were spread across the two platforms (EPIC: 52 high risk,

57 low risk; 450k: 49 high risk, 48 low risk), and that results were consistent when analysis was performed for each platform

separately.

Hi-C analysis
We confirmed data quality by assessing the fraction of cis-long range contacts for each library. Each map contained an average of

320 million contacts, for an average resolution of 10 Kb. We used these data to derive TAD and compartment structures.

Data were controlled for quality, mapped to the reference genome (hg19) and converted into interaction matrices using HiC-Pro

v2.10.0 (Servant et al., 2015) using pipeline code available at https://github.com/aryeelab/topology_tools. Within sample normaliza-

tion was performed using the Iterative Correction and Eigenvector decomposition (ICE) method (Imakaev et al., 2012). For each chro-

mosome in each sample, compartmentswere called using the standard PCAmethod (Lieberman-Aiden et al., 2009). Briefly, the inter-

action matrix X = xij was transformed into an observed over expected (O/E) matrix by dividing each element of the matrix by the

expected interaction frequency for a given distance from the diagonal k = i� j, defined as the mean of the values xij with the same

value of k. A correlation matrix was generated by estimating the pairwise correlation coefficients of all the rows of the O/E matrix.

Then, an eigendecomposition was performed on the correlation matrix, and the sign of the first eigenvector was used to assign

compartment labels. We used expression data and GC content to flip the sign of the eigenvector such that values larger than 0 corre-

spond to open (A) regions and values smaller than 0 correspond to closed (B) regions.

In addition to using the eigenvector (PC1) metric, we also directly quantified the tendency of each region to interact with other re-

gions in either the A or B compartments. We calculated the ‘‘A/B interaction ratio,’’ defined for each 100kb genomic window as the

ratio of interaction frequency with the A versus B compartments using the O/E matrix. Specifically, we calculate log2(mean O/E inter-

action frequencywith A regions) – log2(meanO/E interaction frequencywith B regions). For each comparison, A andBwere defined in

the ‘baseline’ condition: normal colon tissue, HCT116 cells treated with DMSO, or early passage fibroblasts (passage 16). The same

A and B definitions were used for all samples within a comparison. We confirmed that assessing the relationship between compart-

mental change and hypomethylation gave consistent results when using A/B interaction ratio instead of eigenvector as the outcome

(See ‘‘Association of compartmental organization with DNA hypomethylation’’).

In primary tissues, compartment I was defined as those genomic regions with a positive value of the first eigenvector that were

within a block of DNA hypomethylation (defined by comparing tumors versus normal). We verified that compartment I could be iden-

tified based only on Hi-C data. To do this, we plotted the first 5 eigenvectors of the matrix decomposition used to define compart-

ments A and B. The first eigenvector separates compartment A and B. Compartment I could be identified using the second eigen-

vector on several chromosomes. In other chromosomes, compartment I was often separated by lower eigenvectors, and became

more evident when we applied the matrix decomposition method to individual chromosome arms. For IMR90 cells, compartment

I was assigned as in primary tissues using DNA methylation differences between proliferating and senescent cells. For HCT116,

100Kb genomic bins were labeled as I if two consecutive genomic bins had a positive value on the eigenvector decomposition

described (Lieberman-Aiden et al., 2009), and if their open sea CpG DNA methylation values were equal or less than 80%. We

confirmed that this approach enriched for regions that were consistent with our definition of compartment I, i.e., that had intermediate

A/B contact Hi-C patterns and that were enriched for the H3K27me3 chromatin mark compared to compartments A and B.

Sub-compartment structures defined by Rao et al., 2014 were called using SNIPER (Xiong and Ma, 2019). SNIPER uses Hi-C data

and sub-compartment calls to train a model that is able to learn the interaction patterns of each sub-compartment. These trained

models can be used to define sub-compartments from Hi-C data that are distinct from the training Hi-C data. To call sub-compart-

ments in colon tissue, we used the pre-trained models provided by SNIPER that were trained using 5% of GM12878 Hi-C data (Rao

et al., 2014), as these data were of a comparable coverage to our individual HiC samples.

Insulation scores were calculated by defining two windows of length l, one upstream and one downstream of a given genomic po-

sition. For each chromosome, the log (base 2) ratio of the sum of interaction counts within each window and the interaction counts

between the twowindowswas calculated at each position. These log ratios were further transformed into z-scores by subtracting the

median and dividing by the median absolute deviation. In order to capture boundaries of TADs of varying sizes, including nested TAD

structures, the z-scores were calculated genome-wide for different values of l, specifically l = 200Kb, l = 400Kb and l = 800Kb.

Boundaries were called for genomic positions where the z-scores were larger than the 90%quantile of a standard normal distribution

in at least one resolution in one sample. Three strategies were used to assess the stability of TADs across samples: (1) we calculated

the correlation coefficients of the insulation scores, (2) for each sample, we defined the position of TAD boundaries in that sample and

calculated the percentage of TAD boundaries where the insulation scores of other samples were also in a local minima and (3) we

plotted metaplots of the insulation scores to visually inspect conservation of TAD boundaries.

Juicebox (Durand et al., 2016) was used for exploratory visualization of the Hi-C data.
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Association of compartmental organization with DNA hypomethylation
We used linear mixed effects models to assess the association between open-sea CpG hypomethylation and Hi-C eigenvector in

three settings: 1) tumor versus normal colon, 2) HCT116 cells treated with DMSO (control) or 5-azacytidine, and 3) aging WI38 fibro-

blasts sampled at passage 16, 30 and 40. For each 100kb window in each sample we computed DNA hypomethylation relative to a

baseline condition (normal colon, HCT116+DMSO, or WI-38 passage 16). In each case, we fit linear mixed effects model to I and B

separately with eigenvector as the outcome, hypomethylation bin as a fixed effect and random effect terms for sample and genomic

window. The intercept corresponds to regions withminimal (< 15%) hypomethylation, and the coefficient estimates shown in Figure 5

represent the mean eigenvector change relative to these methylation-stable regions. An additional model was used to assess PC1

change over time in WI-38 fibroblasts for 100kb windows that show > 20% hypomethylation in late passage (P40) versus early pas-

sage (P16) WI-38 fibroblasts. This model uses passage number as the fixed effect instead of hypomethylation.

HiChIP analysis
Data were controlled for quality, mapped to the reference genome (hg19) and converted into interaction matrices using the HiC-Pro

pipeline (Servant et al., 2015). Chromatin loops were called using the hichipper 0.7.3 with the parameter to use user-defined peaks

(Lareau and Aryee, 2018b). hichipper was run for each HiChIP sample using the union of CTCF and H3K27ac peaks as the predefined

peak set. The hichipper pipeline defines potential loop anchors by extending peaks by a fixed window (i.e., 500bp) to account for

uncertainty in the peak calling and merging peaks whose genomic distance is below 500bp. These extended peaks are overlapped

with restriction fragments and are further extended to the edges of the restriction fragments they overlap. For each pair of potential

loop anchors, hichipper counts the number of valid contact pairs (defined by HiC-Pro) that support their 3D interaction. Running this

step for each sample results in a matrix Zij = zij where each column is a sample j and each row i represents a pair of loop anchors (i.e.,

a loop), and zij is the number of valid read pairs that supports a loop i in sample j. To distinguish between random background con-

tacts from contacts due to DNA looping, hichipper runs the mango background correction model on the sum of loop counts across

samples (i.e.,
P
j

zij). The mango correction consists of modeling the counts using a binomial distribution to estimate the probability of

observing the counts between two genomic loci given its genomic distance. The resulting p values are corrected for multiple testing.

Loops with a q-value smaller than 0.1, with at least 4 valid contacts in two or more samples and with at least 20 counts across all

samples were considered high-confidence loops and were considered for further analysis. Significant loops were annotated as

enhancer-promoter loops if one of the anchors overlapped an H3K27ac peak (enhancer-like) and the other anchor overlapped the

promoter of a gene.

To assess the robustness of our results to the loop calling algorithm,we repeated our analyses using a different loop calling algorithm,

cLoops (Cao et al., 2019). We ran cLoops version 0.92 using the parameters ‘‘-hic -eps 2500,5000,7500,10000 -minPts 3,5,10 -j -s -w’’

for each sample and used the union of the per-sample significant loops as our final set of loops. The global trends described in themain

text were robust to the loop calling algorithm.

The software tool diffloop was used to test for differential looping (Lareau and Aryee, 2018a). diffloop uses the statistical engine of

the edgeR package (Robinson et al., 2010), where the matrix of loop counts Zij is modeled using generalized linear models (GLM) of

the negative binomial distribution:

Zij � NB
�
mij;ai

�

mij = nijzij
where mij is the fittedmean and ai is the dispersion estimate, which
 is estimated using the common dispersionmethod from edgeR. nij
are normalization factors that account both for library size and for copy number differences between samples. Specifically, we over-

lapped the genomic coordinates of the loop anchors with the copy number estimates of each sample (see Section ‘‘Copy number

variant analysis’’ for details) to generate a matrix of copy number estimates (loops i times sample j). This matrix of copy numbers

was row-centered. The resulting matrix wasmultiplied by the library size factors estimated by edgeR and the resulting values defined

nij, which were introduced as offsets when fitting the GLMs. To test for differential looping between conditions, a GLM was fitted for

each gene and a likelihood ratio test was used to calculate p values for each loop and the Benjamini-Hochberg was used to correct for

multiple testing.

Copy number variant analysis
The coverage of our DNA methylation sequencing assays was used to assess copy number alterations in tumors. For each sample,

the number of sequencing reads was counted for non-overlapping fixed-width genomic regions of 40Kb and CNAnorm was used to

infer copy number alterations. CNAnorm inputs two vectors of read counts, wkl and ykl, which represent read counts for genomic re-

gion l of chromosome k for a tumor sample and a matching normal sample, respectively. CNAnorm performs the following steps to

determine copy number alterations. First, the ratio of the read counts is calculated, rkl =
wkl

ykl
: This ratio is normalized using a loess-

based method that defines rnormkl , which removes technical dependencies between rkl and GC content. Second, to remove random
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error variability, rnormkl is smoothed throughout the genome (Huang et al., 2007). Third, rnormkl values are transformed so that the most

common genomic regions are centered to ratio one. Then, CNAnorm normalizes for tumor purity by shrinking rnormkl so that the modes

of the distribution fit values resulting from copy number alteration processes (deletion = 0, deletion of one chromosome copy = 0.5, no

CNV = 1, amplification of one copy = 1.5, etc). Finally, a circular binary segmentation algorithm is used to define regions with copy

number alterations (Olshen et al., 2004).

Since not all our tumor samples contained amatching normal sample, we used the normal sample with the highest coverage as the

reference sample for all our tumors. We used copy number calls to verify that the epigenetic differences between tumors and normal

were not only driven by copy number alterations by introducing the estimated CNV as offsets in the statistical models when doing

inferences and making sure that the epigenetic differences were present after we masked genomic regions with CNVs.

SNP Analysis
We identified 28 colon cancer risk SNPs (MacArthur et al., 2017) that coincide with E-P loop enhancer anchors and assigned target

genes based on the corresponding promoter contact (Table S4). These looping data confirmed predicted targets, including risk SNPs

previously associatedwithCOLCA1/2 or TERC expression (Figures S2I–S2K; Peltekova et al., 2014). 5 of the 28 risk SNPswere asso-

ciated with distal genes rather than the nearest promoter (Table S4).

Gene expression analysis
Download and processing of transcriptome data

RNA-seq processed data from TCGA was downloaded programmatically using TCGAbiolinks (Colaprico et al., 2016) and recount2

(Collado-Torres et al., 2017). Gene count normalization was done using DESeq2 (Love et al., 2014) and statistical inference was done

using limma-voom (Law et al., 2014). Genomic ranges operations were done using GenomicRanges infrastructure (Lawrence et al.,

2013). RepeatMasker was used to extract the genomic coordinates of repeat elements (Smit et al., 2015). For each repeat element in

the human genome, we calculated the total coverage for each TCGA sample and followed the default recount2 pipeline to estimate

scaled read counts. Our in-house RNA-seq data was quantified using salmon (Patro et al., 2017) and differential expression analyses

were done as described in Bioconductor’s RNA-seq workflow (Love et al., 2015).

Pan-cancer analysis of gene expression associated to hypomethylation
To test for association between block level (open sea) DNA methylation and gene expression, we defined a block score as the mean

open sea CpGDNAmethylation across hypomethylation blocks for each TCGA sample. Tominimize confounding correlations driven

by stromal cell fractions, only tumors with stromal cell fractions smaller than 60% were considered for further analysis (Thorsson

et al., 2019). Furthermore, the remaining TCGA tumors were grouped into 5 equally-sized bins according to their stromal cell fraction

content. A limma-voom model was fitted using as predictors the block scores and the stromal cell fraction bins (i.e., categorical la-

bels) as a blocking factor. This strategy enabled the identification of genes correlated with hypomethylation, while adjusting for po-

tential confounding by stromal cell content. Using this pipeline, we defined genes associated to block hypomethylation in each tumor

type. We tested for oncogene enrichment using Fisher’s exact test using published oncogene annotations (Liu et al., 2017).

Exclusion of genes of likely non-tumor cell-origin
For downstream analyses, we sought to exclude from analyses those genes whose expression patterns could be driven by

differences in stromal or immune cell composition by two filters: 1) We downloaded gene expression data from cell populations pu-

rified using fluorescence activated cell sorting (Calon et al., 2015) and excluded genes where the average expression level was higher

(> 2 fold change) in fibroblast cells compared to epithelial cells. 2) We downloaded GTEx blood RNA-Seq data from the recount2

project (Collado-Torres et al., 2017) and scaled toward a target read count of 1,000,000 reads using the scale_counts function of

the recount R/Bioconductor package. We excluded genes where the median scaled count in blood samples was greater than 10.

Survival analysis
Preprocessed Affymetrix U133Plus2 microarray gene expression data (NCBI GEO GSE39582) was downloaded using the curate-

dCRCData R/Bioconductor package (Marisa et al., 2013). Eight of 566 samples with low average pairwise correlation (< 0.9) with

other samples were excluded in a QC filtering step. Gene expression values were Z-score transformed.

We computed a gene expression risk score as the average normalized expression level of the 146 genes that are downregulated

with hypomethylation in the I and B compartments for samples from Marisa et al. (2013) and the TCGA COAD cohort (Marisa et al.,

2013). For Marisa et al. (2013), we restricted to the 145 genes where the corresponding gene symbol was present. We defined a

‘‘high’’ score as those values that were 2sd (robustly estimated with the R ‘mad’ function) above the median for the Marisa et al.

(2013) study, and 1 sd above the median for the TCGA cohort. We constructed Kaplan-Meier survival curves using available

data for recurrence-free survival (Marisa et al., 2013) and overall survival (Cancer Genome Atlas Network, 2012). To assess the as-

sociation of expression risk score with survival outcomes while adjusting for known risk factors we fit a Cox Proportional Hazards

model to data from the Marisa et al. study, using gene expression risk score, clinical stage, BRAF mutation status and MSI status

as predictors.
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ChIP-seq analysis
Reads were mapped to the reference genome (hg19) using bwa version 0.7.12 (Li and Durbin, 2009). CTCF peaks were called using

GCAPCwith default parameters (Teng and Irizarry, 2017) and H3K27ac peaks were called using MACS (Zhang et al., 2008). The data

revealed the expected punctate peaks of the enhancer-associatedmark, H3K27ac, aswell as broader regions of the repressivemod-

ifications, H3K9me3 and H3K27me3. CTCF binding sites were highly enriched for the CTCF bindingmotif (OR = 19.04; p < 10�15). For

differential CTCF peak analysis, the union of peaks that were detected in at least two samples were considered and reads were

counted for each peak in each sample. Differential CTCF binding was inferred using DESeq2, introducing offsets to the generalized

linear model to normalize for library size (Love et al., 2014), copy number differences, and non-linear trends (Lun and Smyth, 2016).

Copy number estimates for each genomic region were obtained using CNAnorm (Gusnanto et al., 2012). To account for technical

experimental variation, the loadings of the first principal component were introduced as a covariate on the generalized linear model.

CTCF sites were considered lost if they had a q-value smaller than 0.1 and a methylation difference larger than 20%. To evaluate the

effects of methylation of CTCF sites in chromatin looping, we performed aggregate peak analyses based on a comprehensive list of

loops annotated on the human genome (Rao et al., 2014). Lost CTCF peaks were assigned to loops if they overlapped with loop’s

bidirectional CTCF motifs. To assign genes upregulated upon TAD boundary disruption, only peaks within 50Kb of a TAD boundary

were considered. For each gene near a disrupted TAD boundary, a linear model was fitted on TCGA data using gene expression as a

response variable and the average methylation at the lost CTCF site as predictors. Genes were selected if they had a significant

positive (at a false discovery rate of 15%) association between their expression and the methylation levels at the corresponding

TAD boundary CTCF.

DNA polymer modeling
To visualize genome organization in normal tissues and primary tumors, we applied a computational approach to derive polymer

models and 3D structures for each sample. As illustrated in Figure 2D, thesemodels were fine-tuned to ensure that simulated in-silico

contact maps reproduce the corresponding experimental results. We followed the same protocol to parameterize the models for

different samples independently, and any difference between simulated structures, if observed, should reflect the alterations in

genome organization detected by Hi-C.

The polymer models explicitly consider each individual chromosome as a string of beads for structural representation. Only one

copy of the two homologs was included since the Hi-C data do not provide allele-specific contacts. We studied the genome orga-

nization at two resolutions that represent each bead as either 1Mb or 100kb long genomic segments. The 1Mb-resolution model is

computationally efficient and allows us to explore the genome organization in multiple samples. On the other hand, the 100kb-res-

olution model provides a more detailed representation of the genome and will enable us to characterize the spatial localization of

compartment I, introduced in the main text.

A key innovation of the polymer modeling approach is its use of an ensemble of structures, instead of a single, unique conforma-

tion, to reproduce Hi-C data. The ensemble of structures is assumed to follow a Boltzmann distribution with a potential energy func-

tion UME(r), the expression of which can be derived following the maximum entropy principle (Qi et al., 2020; Qi and Zhang, 2019;

Zhang andWolynes, 2015, 2016) and is provided below. Parameters of the polymer model are solely encoded in the energy function,

and their values were determined iteratively such that the simulated structures reproduce Hi-C contact maps. Molecular dynamics

simulations were carried out to collect structures consistent with the energy function and the Boltzmann distribution.

Energy function
The potential energy function for the genome adopts the following form:

UMEðrÞ =
X
I

½Uðr IÞ + UidealðrIÞ� + UcomptðrÞ; [1]
where r represents the 3D conformation of the entire genome.
 I indexes over different chromosomes and rI corresponds to the

conformation of chromosome I. By definition, r = fr1; r2;/; r23g Uðr IÞ and UidealðrIÞ are generic potentials shared by all chromo-

somes, and UcomptðrÞ describes compartment-type-specific interactions within the same chromosome and between different

chromosomes.

Specifically, Uðr IÞ is the energy function for a confined homopolymer and consists of four terms, Ubond, Uangle, Usc and Uc. Ubond is

the bonding potential between neighboring beads. Uangle is the angular potential applied among every three neighboring beads to

define the persistence length of the polymer. Usc is a soft-core potential applied to all the non-bonded pairs to enforce the excluded

volume effect among genomic loci.Uc models a spherical boundary and is introduced tomimic the confinement effect applied by the

nuclear envelop onto the chromosomes. The radii of the spherical confinement is chosen to ensure a volume fraction of 0.1. Explicit

expressions for UðrIÞ can be found in Zhang and Wolynes, 2015 and Qi and Zhang, 2019.

UidealðrIÞ is introduced to reproduce the power law decay of the contact probability as a function of genomic separation for each

chromosome (Di Pierro et al., 2016; Qi and Zhang, 2019). It describes the tendency for chromosomes to collapse and form territories

in addition to what has been enforced by the confinement potential Uc. Uidealðr IÞ is defined as
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Uidealðr IÞ =
X
i;j˛I

aidealðjj� ijÞfðrijÞ; [2]
where fðrijÞ determines the contact probability of a genomic pair w
ith a spatial distance of rij, and i; j index over all pairs of non-bonded

chromatin beads from chromosome I. Following Qi and Zhang (2019), we define fðrÞ as

f rð Þ=

8>><
>>:

1

2
1+ tanh s rc � rð Þð Þ½ �; if r%rc

1

2

rc
r

� �4

; if r > rc

[3]
where rc = 2:0 and s= 2:0. aidealðji�jjÞmeasures of the strength of
 the contact at a given genomic separation ji�jj and its value can be

determined from Hi-C data as detailed below. It contributes to a total of N� 1 parameters, where N is the number of beads for the

longest chromosome (chromosome 1, 249Mb).

For the 1Mb-resolution model, UcomptðrÞ is defined as

UcomptðrÞ =
X
I

X
i;j

aintra

�
CI

i ;C
I
j

�
fðrijÞ +

X
I;J

X
i˛I;j˛J

ainter

�
CI

i ;C
J
j

�
fðrijÞ; [4]
where I and J index over different chromosomes and i and j in
dex over non-bonded pairs of chromatin beads. CI
i denotes the

compartment type for bead i from chromosome I and can be either A or B. We used different parameters aintra and ainter for intra-

and inter-chromosome interactions to account for the presence of different molecular players that organize the genome at various

lengthscales (Qi and Zhang, 2019). This potential contributes a total of 6 parameters to the model.

Therefore, for the 1Mb-resolution model, the total number of parameters is N� 1+ 6= 254.

For the 100kb-resolution model, we further separated the intra-chromosome potential into intra- and inter-TAD interactions de-

pending on whether the pair of beads are within the same topologically associating domain (TAD) or not. Specifically,

UcomptðrÞ =
X
I

X
i;j

h
aTAD
intra

�
CI

i ;C
I
j

�
dTI

i
;TI

j
+ aTAD

inter

�
CI

i ;C
I
j

��
1� dTI

i
;TI

j

�i
fðrijÞ +

X
I;J

X
i˛I;j˛J

ainter

�
CI

i ;C
J
j

�
fðrijÞ; [5]
where TI denotes the TAD index for bead i from chromosome I.
i dTI
i
;TI

j
is the Kronecker delta function and equals to 1 if TI

i = TI
j and

0 otherwise. The positions of TAD boundaries were determined from experimental Hi-C data using the software TADbit (Serra

et al., 2017). Here CI
i can adopt three values: A; B and I. Therefore, UcomptðrÞ contributes 18 parameters to the model. The total num-

ber of parameters for the 100kb-resolution model is thus 2492+ 18= 2510.

Parameter optimization
Parameters in the above energy function can be derived using the iterative algorithm introduced in our previous works (Qi and Zhang,

2019). In particular, parameters aidealðjj � ijÞ, aintra CI
i ;C

I
j

� �
and ainter CI

i ;C
J
j

� �
are tuned to ensure that the following ensemble aver-

ages determined with simulated genome conformation matches corresponding experimental constraints calculated using Hi-C data.

X
I

X
i;j

f rijð Þdjj�ij;s

* +
=
X
I

X
i;j

fexpij djj�ij;s; for s= 1;. ; N� 1 [6]
* +
X
I

X
i;j

f rijð ÞdCI
i
;c1
dCI

j
;c2

=
X
I

X
i;j

fexpij dCI
i
;c1
dCI

j
;c2
; for c1; c2ð Þ˛ A;Að Þ; A;Bð Þ; B;Bð Þf g
* +
X
I;J

X
i˛I;j˛J

f rijð ÞdCI
i
;c1
dCJ

j
;c2

=
X
I;J

X
i˛I;j˛J

fexpij dCI
i
;c1
dCJ

j
;c2
; for c1; c2ð Þ˛ A;Að Þ; A;Bð Þ; B;Bð Þf g
In the above equations, the Kronecker delta function d I equals
C
i
;c1

to 1 if CI
i = c1 and 0 otherwise. dCJ

j
;c2

is similarly defined. fexpij is the

contact probability between the pair of genomic segments i and j determined from Hi-C. UMEðrÞ can be shown as the least biased

potential to reproduce these experimental constraints following the maximum entropy principle.

The constraints used to parameterize the 100kb-resolution model can be similarly defined.

Molecular dynamics simulation details
The software package LAMMPS (Plimpton, 1995) was used to carry out molecular dynamics simulations with reduced units and

collect ensembles of genome organization. Simulations were maintained at a constant temperature T = 1:0 via the Langevin dy-

namics with a damping coefficient g= 10:0 and a time step of dt = 0:01.
Cell 182, 1474–1489.e1–e11, September 17, 2020 e10



ll
Article
To generate an initial configuration for these simulations, we first placed all the chromosomes consecutively on a cubic lattice with

an edge length of 0:9R=
ffiffiffi
3

p
, where R is the radii of the spherical confinement introduced to ensure a volume fraction of 0.1. This

configuration was subsequently equilibrated along a 100,000-step-long simulation under the potential
P
I

UðrIÞ to relax both the to-

pology and energy of the polymer structures. The last configuration from this equilibration trajectory was then used to initialize our

whole genome simulations. We note that the long sampling time used in our simulations ensures their convergence. Therefore, all the

results presented in the manuscript are independent of this initial configuration.

Parameters of the whole genomemodels were determined iteratively. We initialized the first iteration of these simulations using the

equilibrated configuration mentioned above. All subsequent simulations were initialized using the end configurations from the pre-

vious iteration. During each iteration, we carried out six independent ten-million-time-step-long simulations for the 1Mb-resolution

model and ten independent two-million-time-step-long simulations for the 100kb-resolution model. Genome conformations were

saved at every 2000 timesteps to calculate the ensemble averages. A total of 10 iterations were performed for the 1Mb-resolution

model to reach an error of less than 5%.We define the error as ε=
P��fsimi � fexpi

��=P fexpi , where fexpi are the experimental constraints

defined in Equation 6 and fsimi are the corresponding ensemble averages determined from computer simulation. We used 35 itera-

tions for the 100kb-resolution model to reach an error of less than 15%.

With the converged parameters, weperformed additional six independent twenty-million-time-step-long simulations for the 1Mb-res-

olutionmodel and ten independent four-million-time-step-long simulations for the 100kb-resolutionmodel. A total of 60,000 and 20,000

structures were collected for the 1Mb- and 100kb-resolution model respectively to perform all the analysis presented in the main text.

Radial density profile
The compartment-specific radial density functions were calculated with the following expression

rðrÞ = nðrÞ
4pr2Dr$N
where r is the spatial distance from the nuclear center. nðrÞ is the
 number of genomic loci of a given compartment type found in the

spherical shell from r to r +Dr, and the angular brackets indicates an ensemble average over all the simulated genome structures.N is

the total number of genomic loci of that given compartment type.

Electron Microscopy Analysis
Quantifications were performed using Fiji version 2.0.0-rc-69/1.52p by thresholding the 8-bit EM images. The outer border of each nu-

cleus was delineated using the freehand tool and its area and% positive for the heterochromatin threshold was measured by set mea-

surements > limit to Threshold.Next, the samenucleuswasmeasuredagainwith a freehand selection on the inner border of the nucleus,

excluding theperipheral heterochromatin (thechromatin touching the nuclearmembrane). Thepercentage internal heterochromatinwas

calculated by dividing the internal heterochromatin by the area of the internal measurement andmultiplied by the total nuclear area and

plottedas thepercentageof internal over thepercentage total heterochromatin. Independent data from three sampleswithN=19, 37, 46

nuclei for normal tissues and N = 19, 95, 71 nuclei for tumor tissues were obtained. Visualization of the data and statistical testing were

performedusingPrism8 version 8.4.2. Thedatawas importedasa nesteddataset and statistical significancewas testedusing anested,

unpaired, two-sided t test with alpha = 0.05. Data were represented using a frequency distribution plot with percentage internal hetero-

chromatin using bin size 6% on the x axis and the percentage of cells in each of those bins on the y axis.

DNA-FISH analysis
To calculate redistribution of the A and B compartment in primary tissues, the nuclei for 2D images were manually curated to delin-

eate intact single tumor and colon epithelial nuclei in FIJI version 2.0.0-rc-69/1.52p (N = 2 tumors and 2 normal samples). This step

was necessary to avoid generating data from poorly oriented and non-tumor and -colon epithelial nuclei such as immune cells and

fibroblasts. As the latter cells have strikingly different nuclear morphologies, we could easily exclude them by visual inspection. Next,

the pictures were loaded into Cellprofiler version 3.1.9, the nuclei and compartment spots segmented, and the original channel im-

ages masked on the identified DNA-FISH spots. The radial intensity distribution of the masked images was calculated in the nuclei

using 20 scaled bins per cell. To determine redistribution of the B compartment in copy number stable tumors toward the nuclear

interior, the Fraction at Distance of each masked image bin was plotted in Prism Version 8.4.2. Because the chromosome territory

of chromosome 12 is in general peripherally located, bin 1-10 were summed together for their visualization.

Radial distribution of DNA-FISH in cells was quantified using Cellprofiler version 3.1.9 2 (McQuin et al., 2018), segmenting the

nuclei, followed by fill holes and exclusion of cells touching the edge of the image. Next, the radial distribution of each channel (A

compartment (A488); B compartment (Cy3) and I compartment (Cy5) was measured using the module MeasureObjectIntensityDis-

tribution using each nucleus as the center of the points. To obtain distributions for each cell’s radial bin in which the maximum of the

signal was located, we multiplied the Fraction at Distance for each bin and channel with each Mean Fraction value, and gave a value

of 1 to the bin containing the highest value. The counts for each cell and channel were then plotted using Prism Version 8.4.2. Repre-

sentative images and insets in all panels were generated using FIJI version 2.0.0-rc-69/1.52p.
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Supplemental Figures

Figure S1. CpG Island and Block methylation, Related to Figure 1

(A) Boxplot representation of the distribution of DNA methylation values across CpG islands for each tumor sample (x axis). Tumor samples are shown in purple

and normal samples are shown in green.

(B) For each sample (x axis), boxplot representation of the distribution of DNA methylation values across open sea CpGs in hypomethylated blocks. Tumor

samples are shown in purple and normal samples are shown in green.
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(legend on next page)
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Figure S2. Chromatin Loops, Related to Figure 1

(A) Boxplots depict expression fold-change (log2) between tumors and normal samples (y axis) for genes engaged in enhancer-promoter (E-P) loops. Genes are

stratified by change in E-P loop strength between tumors and normal (x axis). This plot is equivalent to Figure 1C, but uses RNA-seq data from our cohort instead

of TCGA data.

(B) Boxplot representation of the distribution of expression log (base 2) fold-changes between tumors and normal stratified by the strength of loop strength fold

changes (x axis). This plot is equivalent to Figure 1C, but includes only copy number stable loci.

(C) Dot plot shows normalized (EPHA2 E-P) loop counts for each normal (green) and tumor (purple) sample. Counts are shown for the differential loop highlighted

in Figure 2D.

(D) Dot plot shows EPHA2 expression levels for normal colon (green) and tumor (purple). Each point represents an RNA-seq sample from our cohort.

(E) Boxplots depict EPHA2 expression in 41 normal colon samples and 480 colon tumors from TCGA.

(F) Normalized (PDCD4 E-P) loop counts are shown for each normal (green) and tumor (purple) sample. Counts are shown for the differential loop highlighted in

Figure 2E.

(G) Dot plot shows PDCD4 expression levels for normal colons (green) and tumors (purple). Each point represents an RNA-seq sample from our cohort.

(H) Boxplots depict PDCD4 expression in 41 normal colon samples and 480 colon tumors from TCGA.

(I-K) Genomic views of the TERC locus (F), COLCA1/2 locus (G) and CXCR4 locus (H). Upper panels show SMC1 HiChIP loops as gray arcs; middle panels show

H3K27ac signal in colon tumors in purple. Colon cancer risk SNP positions are indicated by blue lines. H3K27ac peaks with coincident loop anchors are indicated

in orange.
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Figure S3. Topologically Associated Domains, Related to Figure 1

(A) Horizonal heatmaps show local Hi-C contact patterns (red heat) across chromosome 14 for normal colon (green), colon tumors (purple) and cell lines (black).

Validation cohort is highlighted (vertical bars, left).

(B) Heatmap shows pairwise correlations between genome wide TAD boundary scores (blue heat) in normal colons (green), colon tumors (purple) and cell lines

(gray). These samples (rows, columns) are ordered according to a complete linkage hierarchical clustering (top). Original cohort is indicated by white squares and

validation cohort is in black squares.

(C) Metaplot of the 40Kb-resolution boundary scores are shown for each Hi-C sample. Each panel represents one HiC sample, each row of the heatmap represent

one TAD boundary, and the columns represent the genomic position relative to the TAD boundary. Original cohort indicated by gray outlines and validation cohort

is indicated by black outlines.

(D) Bar plot of TAD boundary conservation analysis using the approach by Schmitt et al., 2016. Data are summarized over both the original and validation cohorts.

Plot shows the number of tumors where TAD boundaries are called at the same location as TADs in colon normal tissues (x axis). The y axis shows the fraction of

normal colon TAD boundaries. The overall conservation of TAD boundaries is similar to what has been described across different tissue types (Schmitt

et al., 2016).

(E) Boxplots depict DNA methylation (black) and CTCF binding (gray) for CTCF binding sites that are differential between CIMP and non-CIMP tumors. Data

shown for normal colon, non-CIMP tumors and CIMP tumors.

(legend continued on next page)
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(F) Volcano plot shows differential analysis of CTCF binding sites (points) between CIMP and non-CIMP tumors (points to the upper left represent CTCF binding

sites lost in CIMP tumors). Sites that are hypermethylated in CIMP tumors relative to non-CIMP samples are highlighted (red; methylation difference > 15%).

(G) Left: Cartoon schematic of Hi-C heatmap shows a strong loop peak corresponding to an interaction between two CTCF bound loop anchors flanking a TAD

(top panel). This theoretical CTCF-CTCF loop interaction is weakened in a sample with reduced CTCF binding at one or both anchors (bottom). Right: Heatmaps

show actual Hi-C signals aggregated over CTCF-CTCF loops, revealing interaction peaks (i.e., averaged signal for the pixels corresponding to the tops of the TAD

triangles illustrated at left). Top: Heatmaps aggregate signals for loopswhose CTCF anchors are stable in normal colon, non-CIMP tumors andCIMP tumors (top).

Bottom: Heatmaps aggregate signals for loops whose CTCF anchors are lost in CIMP tumors. These loop anchor interactions are weakened in CIMP tumors.

(H) Boxplots depict fold-change (log2) in E-P loop strength between tumors and normal. Loops crossing TAD boundaries are shown. Loops are stratified ac-

cording to whether the TAD boundary that they span loses CTCF binding and gains methylation in CIMP tumors (lost) or whether it retains CTCF (stable).

(I) Boxplots depict expression fold-change (log2) between CIMP and non-CIMP tumors stratified by whether the genes are located in a disrupted TAD or not.
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(legend on next page)
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Figure S4. Compartment Reorganization, Related to Figure 2

(A) Hi-C eigenvectors (PC1) based on long-range interactions demarcate compartments A (positive values, blue) and B (negative values, yellow) across a 45 Mb

region of chromosome 6. Data showHi-C eigenvectors for normal colon (green), colon tumors (purple) and cell lines (black). Validation cohort is indicated (vertical

bars, left).

(B) Heatmap shows pairwise correlations between the Hi-C eigenvector (blue heat) in normal colon (green), colon tumors (purple) and cell lines (gray). Samples

(rows, columns) are ordered according to a complete linkage hierarchical clustering (top). Original cohort is indicated by white squares and validation cohort by

black squares.

(C) Heatmap shows fold-change (log2) in Hi-C contact frequencies between colon tumors and normal colon across chromosome 1. Data are based on an average

of normal colons (n = 4) and tumors (n = 7). Interactions that increase in tumors (red) or decrease in tumors (green) are evident. Top, left: Hi-C eigenvector indicates

compartment assignments in colon tumor (A = blue, B = yellow).

(D) Plot shows average ratio of interactions with the A versus B compartments (y axis), summarized for compartment A and B loci for original (left) and validation

(right) cohorts. Each point represents the average for 100 kb windows per sample for normal colons (green) or tumors (purple). Statistical significance was

computed by a two-sided Wilcoxon rank sum test comparing tumor versus normal absolute A/B ratio values (original cohort: p = 0.004; validation cohort:

p = 0.005).

(E) Whole nucleus maximum entropy models (1 Mb resolution) for two normal colon samples showing compartment A in blue and compartment B in yellow.

(F) Density plots depict radial distributions of compartment A and compartment B regions in the maximum entropy models derived for normal colons (green, as in

panel (E) or colon tumors (purple, panel (G)(0 = interior of the nucleus, 1 = periphery of the nucleus). Each line corresponds to a maximum entropy model derived

for one experimental Hi-C dataset (2 colon tumors and 2 normal colons).

(G) Whole nucleus maximum entropy models (1 Mb resolution) for two colon tumors showing compartment A in blue and compartment B in yellow.

(H) Maximum entropy models for the whole genome for normal colons and colon tumors, highlighting copy number stable chromosomes 3 (upper) and 4 (lower).

Compartment A is colored in blue and compartment B is colored in yellow.

(I) Maximum entropymodel for whole genome for a copy-number stable tumor (T6) sample showing compartment A colored in blue and compartment B colored in

yellow.

(J) Genomic view of chromosome 12 shows compartment assignment from normal colon (top) and DNA-FISH probe distribution (bottom; black bars).

(K) Representative transmission electron microscopy (EM) images of nuclei from normal colon epithelium (top row) and colon tumors (bottom row).
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Figure S5. Intermediate Compartment I, Related to Figure 3
(A) Density plot shows Hi-C eigenvector difference between tumor and normal for 100 kb windows with PC1 > 0 in normal colon tissue. Regions are stratified

based on degree of tumor hypomethylation.

(B) Barplot showing the fraction of the genome (y axis) assigned to each compartment (x axis). Black bar represents the fraction of the genome that is block

hypomethylated in tumors with respect to normal.

(legend continued on next page)
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(C) Aggregated contact map shows Hi-C signal averaged over all hypomethylated blocks across normal and tumor samples. The x axis shows genomic positions

relative to hypomethylated blocks. The edges of hypomethylated blocks correspond to TAD boundaries.

(D) Plots show average frequency of Hi-C contacts for pairwise interactions that occur within the same genomic compartment (left), and between different

compartments (right). Data are shown for four normal colon samples (dots). Compartment I regions have inter-compartment interactions with both A and B

regions.

(E-F) Hi-C contact map of observed versus expected interactions in normal colon for two representative regions across chromosomes 6 (E) and 14 (F).

Compartment designations are shown for both rows and columns.

(G-H) Hi-C contact map of observed versus expected interactions in colon tumors for two representative regions across chromosomes 6 (G) and 14 (H).

Compartment designations are shown for both rows and columns.

(I) Plot shows average ratio of interactions with the A versus B compartments (y axis), summarized for compartment I. Each point represents the average of 100 kb

windows for normal colons (green) and tumors (purple). Shown for original (left) and validation (right) cohorts.

(J-L) Scatterplots of first and second (J and L) or first and third (K) eigenvectors for chromosomes 12 (I), 13 (J) and 20 (K) resulting from the eigenvector

decomposition method to define compartments. Data are shown for the aggregated normal colon Hi-C matrices. Each point represents one 100 kb bin and is

colored by compartment (A: dark blue; I: light blue; B: yellow).

(M) Boxplot shows the distribution of PC1 values resulting from the eigenvector decomposition of the HCT116 Hi-C matrix. Data are shown for the 100Kb-bins

that overlap with our DNA-FISH probes. Probes for the respective compartments have the expected distributions of PC1 values.

(N) Barplot indicates the percent of cells for which themaximumDNA-FISH signal intensity for compartments A, B or I is located at the indicated radial position for

102 normal colon nuclei.
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Figure S6. Related to Figure 4

(A) Boxplots show H3K27me3 fold-change (y axis) between tumors and normal colon as a function of DNA hypomethylation in tumors (x axis).

(B) Histogram shows the distribution of gene density, measured as number of promoters per 100Kb, for each genomic compartment.

(C) For each 100Kb genomic bin, change in DNAmethylation upon 5-aza treatment (y axis) is plotted against baseline (DMSO)methylation level. Regions showing

high levels of methylation in the control (DMSO) sample showed the greatest loss of methylation upon treatment with 5-aza.

(D) Plots show average DNA methylation for a cohort of normal (N) colon samples and low- (L-A) and high-grade adenomas (H-A) (Fan et al., 2020). Points

represent individual samples. Data are stratified by compartment.

(E) Boxplot depicts fold-change (log2) in expression for genes in compartments A, I or B between tumor and normal colon using TCGA gene expression data.

Genes in compartments I and B are downregulated in tumors.

(F) Boxplot depicts fold-change (log2) in expression for genes in compartments A, I or B between tumor and normal colon. This panel is equivalent to (E), but the

values reflect RNA-seq data from our cohort rather than TCGA.

(G) Boxplot representation of gene expression fold-changes in cancer initiating cells treated with EZH2 inhibitor, relative to control (Lima-Fernandes et al., 2019).

Data are shown for genes in compartment I, known EZH2 targets in compartment A and expressed genes in compartment A that are not EZH2 targets.

(H) Density plot shows the distribution of methylation differences in CpG islands in tumors, relative to normal colons (x axis). Compartment I is depicted in light

blue and compartment B is depicted in yellow. Although both compartments are globally hypomethylated in open sea regions, a relatively larger subset of CpG

islands gains methylation in compartment B.
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Figure S7. Related to Figure 6

(A) Volcano plot depicts the association between expression and block hypomethylation for all genes in compartments A, I and B. A positive association on the x

axis indicates upregulation with hypomethylation and a negative association indicates downregulation with hypomethylation. This panel is equivalent to Figures

6A and 6B, but the values were calculated using RNA-seq data from our cohort rather than TCGA data.

(B) Heatmap shows H3K27me3 and H3K9me3 ChIP-seq signal in tumors (first two columns), and the extent of DNA hypomethylation in tumors relative to normal

colon (third column). Each row of the heatmap represents a gene. Three groups of genes are shown: Genes in compartment B that are downregulated with

hypomethylation, genes in compartment B that are upregulated in with hypomethylation (including CGAgenes and ERV repeats), and genes in compartment I that

are downregulated with hypomethylation.

(C) Boxplot shows open seamethylation levels for compartments B and I (mean per individual) for a cohort of normal colon samples stratified by age (x axis) (Wang

et al., 2020).

(D) Volcano plot shows log2 hazard ratio from aCox proportional hazardsmodel of 7,694 variable geneswith expression sd > 0.5 frompreviously published cohort

(Marisa et al., 2013). The set of genes in compartments B and I that are downregulated with hypomethylation are shown in red. A positive log hazard ratio indicates

higher expression is associated with increased risk of recurrence or death.

(E) Coefficient estimates and 95% confidence intervals for association with recurrence free survival from a Cox Proportional Hazards model. The model includes

the 146 gene high risk indicator and the other indicated variables (Data from Marisa et al., 2013).

(F) Coefficient estimates and 95% confidence intervals for association with recurrence free survival from a Cox Proportional Hazards model fit only to samples

from patients with Stage II disease (Marisa et al., 2013).

(G) Boxplots show associations between gene expression and block hypomethylation for 10 epithelial tumor types. Positive values indicate upregulation with

hypomethylation. Separate boxes show data for genes outside (‘out’) or inside (‘in’) a hypomethylated block. Data shown for 10 TCGA cohorts: bladder urothelial

carcinoma (BLCA), breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), esophageal squamous cell carcinoma (ESCA), head and neck squamous

cell carcinoma (HNSC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), rectal adenocarcinoma (READ), stomach adenocarcinoma (STAD),

uterine corpus endometrial cancer (UCEC) (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020).
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